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REVIEW

is synthesized, secreted by the cell and then self-assembled 
in the extracellular space, where it acts as a scaffold for the 
mineral deposition. The organic matrix also contains acidic 
macromolecules, rich in negatively charged groups, which ex-
ert a further control on the modality of deposition, including 
nucleation, polymorphism, growth, orientation, shape and 
dimensions of the crystals (11-13). The mineral phase con-
sists of a basic calcium phosphate (CaP), similar to synthetic 
hydroxyapatite (HA), Ca10(PO4)6(OH)2. Once mineralized, col-
lagen fibrils are used to build up complex hierarchically as-
sembled structures (14), which are designed to fulfill a wide 
variety of mechanical functions (15-18). A further peculiarity 
of bone tissue is its continuous remodeling, which is achieved 
through the resorptive activity of osteoclasts and the synthet-
ic activity of osteoblasts (19, 20).

In spite of the complexity of the events involved in bone 
synthesis, which include hierarchical structuring, adaptive 
growth and constant remodeling, significant advances in un-
derstanding the biomineralization process have been made 
(16, 19, 21, 22). Nonetheless, the reproduction of the whole 
biomineral assembly mechanism by nonbiological methods 
cannot be regarded as an affordable goal. A more realistic ap-
proach is to develop bioinspired processes for obtaining tai-
lored functions using cheap base materials.

Synthetic HA is the most widely utilized CaP for hard tissue 
applications due to its excellent biocompatibility and bioac-
tivity, as well as its similarity with biological apatites. How-
ever, at variance with HA, bone apatite is poorly crystalline, 
consists of smaller crystals and contains a number of foreign 
ions, which account for its nonstoichiometry. On this basis, 
nanocrystalline biomimetic apatite, and further CaPs more 
resorbable than HA, such as dicalcium phosphate dihydrate 
(DCDP), octacalcium phosphate (OCP) and α- and β-tricalcium 
phosphate (α-TCP; β-TCP), most of which can easily hydrolyze 

DOI: 10.5301/jabfm.5000367

Functionalized biomimetic calcium phosphates for bone 
tissue repair
Adriana Bigi, Elisa Boanini

Department of Chemistry “G. Ciamician”, University of Bologna, Bologna - Italy

Introduction

Biomimetics mimics the strategies utilized by living organ-
isms to fabricate biological materials for the development of 
new functional materials (1). In practice, biomineralized tis-
sues often exhibit peculiar morphologies, structures and me-
chanical behavior, and provide useful models for the design 
of complex functional materials (2-4). Moreover, biogenic 
minerals are generally produced using low-cost, easily avail-
able raw materials, in mild conditions of temperature, pres-
sure and pH. Thus, it is not surprising that biomimetics has 
developed and spread into many scientific areas – in particu-
lar, in the field of new biomaterials aimed to repair the skel-
etal system (5-8).

The success of a biomaterial for bone substitution re-
quires the ability of the synthetic material to bond to the sur-
rounding biological tissue (9). To this aim, similarity between 
the synthetic and the biological material, in composition, as 
well as in structure, morphology and functionality, plays a key 
role (10). Bone is a highly organized tissue assembled from 
nano to macro scales to give hierarchical networks (8, 11). 
During bone mineralization, the inorganic crystals are laid 
down on an organic matrix rich in collagen fibrils. Collagen 
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into apatite, are gaining increasing attention (23-26). Some 
characteristic morphologies of CaPs are shown in Figure 1. 
Bone response to synthetic CaPs can be improved through 
modifications with biologically active ions and molecules. 
This paper reviews some relevant recent results achieved in 
the field of functionalized biomimetic CaP materials for bone 
tissue replacement and repair.

Functionalized CaP crystals

Due to the many different ions found in the biological 
environment in close association with the mineral phase of 
calcified tissues, a great deal of attention has been given to 
ionic substitutions, especially in the structure of HA but also 
of other CaPs (23, 27, 28). Relevant biological ions include 
both bivalent, such as Sr2+, Mg2+ and Mn2+, and monovalent, 
such as Na+ and K+, cations, as well as anions, with CO3

2− and 
F- occupying a predominant role (Fig. 2) (29). Ionic substi-
tutions, even to a limited extent, can greatly modify the 
physicochemical properties and bioactive behavior of CaPs. 
In particular, the amount of Si that can be incorporated into 
the HA structure is quite limited (0.1%-5%) (30), although 
this can be enough to provoke important improvements 

of the bioactivity of HA (31, 32). Silicon incorporation into 
the HA structure involves charge compensation, because of 
the replacement of a PO4

3- with a SiO4
4-, and provokes the 

creation of crystalline defects. Recently, it has been shown 
than nanocrystalline SiHA delays early osteoclast-like cell dif-
ferentiation and decreases the resorptive activity of those  
cells (33).

Strontium-enriched CaPs have recently been the object of 
increasing interest due to the success of strontium, adminis-
tered as strontium ranelate, in the treatment of patients af-
fected by osteoporosis (34, 35). Sr can replace Ca in the HA 
structure in the whole range of compositions (36). Sr substi-
tution for Ca influences HA solubility, which increases with 
increasing Sr content (37, 38), thus affecting ionic release and 
finally biological response. In vitro studies carried out using 
normal and osteopenic osteoblasts and osteoclasts have sug-
gested that SrHA promotes bone growth and inhibits exces-
sive bone resorption in a dose-dependent manner (39, 40).

Although the structure of OCP is less favorable for ionic 
substitution than that of HA, Sr can replace Ca in the mono-
clinic lattice of this CaP up to 7.4 at% (41). At variance with 
Sr, which has an ionic radius greater than that of Ca, smaller 
ions, such as Mg2+, Mn2+, Zn2+ and Co2+, usually destabilize HA, 
as well as OCP, and they prefer structures with available octa-
hedral coordination sites, such as β-TCP (42-44).

Magnesium plays a key role in bone metabolism, and its 
reduction has been associated with decreased osteoblast ac-
tivity, with consequent increase of fragility and loss of bone 
mass (45). The presence of Mg induces a decrease of crys-
tallinity of HA (46-48), which may be coupled to increased 
surface hydration (49) and yields increased solubility and re-
duced thermal stability (50, 51).

As in the case of Mg2+, the HA structure does not sustain 
the incorporation of relatively high amounts of Zn2+ (29, 48). 
The presence of Zn in HA, as well as in β-TCP, inhibits in vitro 
osteoclast development and activity (52, 53).

Antiosteoclastic properties have been reported also for 
gallium (54), which has recently raised significant interest in 
view of the possibility of its being associated with CaPs to give 
antiresorptive materials (55).

Biomimetic strategies also involve functionalization of 
CaPs with organic molecules or macromolecules, as syn-
thetic analogues of the acidic macromolecules present in 
biomineralized tissues, with the purpose of modulating CaP 
nucleation, growth, crystal structure, crystallinity and solu-

Fig. 1 - Transmission electron microscopy (TEM) image of hydroxyapatite crystals (A); scanning electron microscopy (SEM) images of octa-
calcium phosphate (B) and β-tricalcium phosphate (C) crystals. 

Fig. 2 - Perspective view along the c-axis of the OH channel environ-
ment of hydroxyapatite. Some of the possible substituting ions are 
reported. The 2 triangles join Ca(II) ions at the same level along the 
c-axis.
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bility. In particular, the interaction of CaPs with a variety of 
amino and polyamino acids has been investigated, to help 
clarify the mineralization process and to obtain materials able 
to provide an improved interfacial bonding with bone tissue 
(56-60).

The use of CaPs as potential delivery systems for os-
teogenic agents, such as growth factors and hormones, or 
other specific drugs, represents an even more difficult and 
attractive challenge. The continuously increased aging of 
the population in developed countries is the main cause  
of the observed serious increase in age-related muscu-
loskeletal disorders, most of which are related to loss of  
bone mass, in conditions such as osteoporosis (61). CaPs 
functionalized with antiresorptive, antibacterial, antiin-
flammatory agents are promising systems to answer the 
increasing demand for materials for the repair and substi-
tution of damaged tissues.

Bisphosphonates (BPs) are the most popular antiresorp-
tive drugs, utilized for treatment of metabolic diseases, such 
as osteoporosis and Paget’s disease, and for the prevention 
and treatment of bone metastases (62, 63). BP-functionalized 
CaPs can be prepared through chemisorption from solution, 
as well through coprecipitation (64-70). In vitro results gener-
ally indicate that BPs maintain their inhibiting effect on osteo-
clastogenesis and on osteoclast activity even if incorporated 
into CaPs (66, 67, 71-73). Both alendronate and zoledronate, 
two powerful amino BPs, can be incorporated into HA up to a 
maximum amount of about 7 wt%, through coprecipitation. 
In both cases, functionalization causes a reduction of the 
crystal dimensions, as shown in Figure 3 for zoledronate. The 
results of in vitro tests revealed a greater effect of zoledro-
nate on osteoclast (67). Zoledronate-HA displays a better in-
hibitory action toward osteoclasts also compared with SrHA, 
which has a better stimulating action on osteoblasts. These 
results support the hypothesis that the cumulative effect of 
the two functionalized agents would be the optimal solution 
for therapeutic purposes (70). A recent in vivo study showed 
that zoledronate-HA nanocrystals injected intravenously into 
a rat model of postmenopausal osteoporosis displayed a 
greater effectiveness in promoting bone formation compared 
with pure zoledronate (74).

Loading CaPs with bone morphogenetic protein (BMP-2) 
and vascular endothelial growth factor (VEGF) was investigated 
with the aim of developing new materials with improved os-
teogenetic and angiogenetic properties, respectively (75, 76).

In addition, CaPs have been proposed as delivery sys-
tems for anticancer drugs, including cisplatin and doxorubicin  
(77, 78), and antibiotics, including gentamicin, vancomycin 
and β-lactams (72, 79).

Bone cements

CaP bone cements (CPCs) can be used to completely fill 
bone defects or cavities, as well as be molded in custom-
ized shapes (80, 81). The cementitious process implies the 
reaction between one or several CaPs and a liquid phase, 
which produces a workable paste that stiffens during the 
reaction, yielding in situ formation of a solid CaP (82). The 
reaction does not provoke an inflammatory response, since 
it is not exothermic, which represents a relevant advantage 
compared with polymethylmethacrylate (PMMA), the most 
widely employed material for implant fixation. Moreover, 
CPCs display excellent biocompatibility and are able to acti-
vate osteogenesis.

The first CPC consisted of tetracalcium phosphate (TTCP; 
Ca4(PO4)2O) and dicalcium phosphate anhydrous (DCPA; CaH-
PO4) (83), and it received the approval of the US Food and Drug 
Administration (FDA) for the treatment of non-load-bearing 
bone defects in 1996 (84). Since this first formulation, a lot of 
compositions have been tested, and a number of studies have 
been performed on the effects of several parameters, such 
as dimensions of cement powder, composition of the liquid 
phase and powder to liquid ratio, on the properties of the ce-
ments (82, 85, 86).

The possible final products for CPC hardening reactions 
can be brushite (CaHPO4·2H2O; DCPD), which, however, is a 
metastable phase and easily transforms into apatite, either 
as stoichiometric HA or as calcium-deficient HA (Ca9(HPO4)
(PO4)5OH; CDHA). Both cement types involve the dissolution 
of a less stable CaP phase to form a more stable one (87). At 
37°C, brushite is the thermodynamically more stable phase 
at pH <4.2, whereas HA is the most stable at higher pH val-
ues. Brushite CPCs display shorter setting times than apatite 
CPCs, a fact that has been ascribed to the higher solubility 
of cement raw materials and to the faster crystal growth of 
DCPD (88).

Many CPC formulations involve the hydrolysis of α-TCP 
powder. The apatite obtained from the hardening reaction 
in an aqueous environment at 37°C is similar to bone apa-
tite (89). The characteristic parameters able to promote fast 

Fig. 3 - Transmission electron microscopy (TEM) images of hydroxyapatite nanocrystals with different zoledronate contents: 0 wt% (A), 4.0 
wt% (B) and 7.4 wt% (C). Scale bars = 100 nm. Reproduced with permission from ref. (67). Copyright 2012 Elsevier Ltd.
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kinetics and reduce the setting time of CPCs include small 
particle size, poor crystallinity, high setting temperature, low 
liquid to powder ratio (L/P ratio), as well as the presence of 
accelerating agents in the liquid or in the solid phase. Set-
ting times must be long enough to allow workability during 
surgery, and fast enough to avoid delaying the operation. 
Efforts have been addressed to developing CPCs that mimic 
more closely the characteristic of hard tissues, and that en-
hance resorption and promote osteogenesis. To this aim, bio-
mimetic strategies suggest the introduction of biopolymers, 
such as collagen and gelatin, in the cement composition 
(89-92). In particular, the addition of gelatin was found to ac-
celerate cement hardening, improve mechanical properties, 
stimulate osteoblast proliferation and enhance the levels of 
osteoblast differentiation markers (87, 92, 93). As an exem-
plum, the compressive strength of an α-TCP-based cement 
enriched with gelatin was found to be 4 times that of the con-
trol cement (89).

CPCs are intrinsically microporous. Microporosity, which 
increases with increasing liquid to powder ratio (94), is es-
sential for impregnation of biological fluids. On the other 
hand, the presence of interconnected macropores pro-
motes bone ingrowth (95). Macroporosity can be created 
through porogen leaching and gas foaming (96). Recently, a 
new method based on mixing the cement CaP powder with 
a previously foamed surfactant-containing liquid has been 
proposed (97).

The presence of macro pores increases permeability 
and, as a consequence, degradation, but it also significantly 
worsens the mechanical performance of the cement. Poor 
mechanical properties is a minor issue in low- or non-load-
bearing applications, whereas CPCs use in load-bearing ap-
plications requires a strength similar to or greater than that 
of the bone tissue being replaced (98). Solid phase additives, 
such as HA and DCPD, as well as the addition of accelerators 
and retardants to the liquid phase, have been proposed to 
increase cement strength (80, 86, 99-101). Increase of DCPD 
content up to 5 wt% in the composition of an α-TCP-gelatin 
cement was found to enhance the values of compressive 
strength and Young modulus from 16 to 35 MPa and from 
480 to 1,600 MPa, respectively (86).

A further strategy for reinforcement involves the ad-
dition of fibers to the cement matrix: both resorbable and 
nonresorbable fibers have been tested to this aim, and the 
influence of several parameters, such as fiber length, amount 

and orientation, on cement properties has been investigated 
(90, 102-105). Enrichment of an α-TCP-based cement with 
electrospun fibers of poly(L-lactic acid) and poly(lactide- 
co-glycolide) was found to slow down the conversion of α-TCP 
to calcium-deficient HA, with a consequent reduction of crys-
tal dimensions and crystallinity of the apatitic phase, which 
yielded fiber-reinforced cements able to maintain their me-
chanical properties in the long term (Fig. 4) (106). Incorpora-
tion of electrospun poly(D,L-lactide-co-glycolide) into a CPC 
consisting of TTCP, DCPA and chitosan lactate increased the 
flexural strength twofold, and toughness by an order of mag-
nitude, compared with the control cement (107).

CPCs are also widely employed as drug delivery systems 
(108). Drugs can be combined with the solid or liquid phase, 
or can be introduced in a particulate carrier added to a ce-
ment formulation (61). Li et al (109) verified that CPC contain-
ing BMP-2 loaded gelatin microspheres yielded faster healing 
and greater mineralization of vertebral defects in osteopo-
rotic goats compared with controls where BMP-2 was loaded 
directly on the cement.

Among the therapeutically important ions which can be 
utilized to functionalize CPCs, a great deal of attention has 
been given to Sr2+, due to its antiosteoporotic properties 
(110). The addition of Sr to the liquid phase was reported 
to have a modest impact on the mechanical properties of 
the cement (111), whereas its inclusion in the solid phase 
as SrCO3 provoked a significant increase of the compressive 
strength (112). Recently, a cement containing α-TCP, DCPA 
and HA, as well as SrCO3 as source of Sr, was implanted  
in a rat femur to fill the gap of a wedge-shaped critical  
size defect mimicking a typical osteoporotic fracture, lead-
ing to an increase in bone formation and enhanced remod-
eling (113).

CPCs have been successfully functionalized also with BPs 
(114). BPs have been loaded on the liquid phase or through 
chemisorptions on one of the components of the cement  
(115-117). Although just small relative amounts of BPs can 
be loaded into CPCs without provoking excessive lengthen-
ing of setting times, they were shown to be sufficient to 
stimulate positive in vitro and in vivo responses (14-17). In 
particular, in a recent study, an injectable CPC loaded with 
alendronate was implanted in osteopenic bone defects in 
the vertebrae of adult female sheep, showing a positive in-
fluence on the microarchitecture of the adjacent trabecular 
bone (118).

Fig. 4 - Scanning electron micros-
copy (SEM) micrographs of an α-TCP 
cement reinforced with electrospun 
polymeric fibers: starting powder 
(A) and after 40 days in physiological 
solution (B). Reproduced with per-
mission from ref. (106). Copyright 
2012 Springer.
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Coatings

Implants at high-load-bearing sites, such as in the case of hip 
and femur replacement devices, must have suitable mechanical 
properties and be resistant to wear and corrosion (119). Several 
metals, including titanium (Ti), Ti alloys and cobalt alloys, as well 
as stainless steels, provide proper mechanical performance, 
which is also associated to a high strength to weight ratio in the 
case of Ti and its alloys. However, bone implant failures, which 
are mainly ascribed to aseptic loosening or infection, occur fre-
quently (120). CaP coating of the implants provides them with a 
highly bioactive interface for surrounding bone tissue.

Besides biomimetic deposition, the coating can be real-
ized utilizing one of numerous physical and chemical meth-
ods, which include plasma spray (121, 122), pulsed laser 
deposition (123, 124), matrix-assisted pulsed laser evapora-
tion (125-127), sputtering (128), electrodeposition (129) and 
sol-gel dipping (130).

Wet chemical techniques offer the best solutions when 
incorporation of organic or biological components is desired. 
Moreover, biomimetic methods offer further advantages, 
such as better control of the crystal structure, morphology 
and thickness (119). The biomimetic approach is based on 
deposition of a CaP thin layer from supersaturated solutions 
in mild conditions similar to those of biomineralization pro-
cesses. As a consequence, it is a relatively easy and low-cost 
method, and allows coating of complex-shaped and porous 
materials (131, 132). Moreover, the composition of the su-
persaturated solution can be enriched with ions and biologi-
cal molecules, as well as drugs, which are deposited together 
with the inorganic layer (133-135).

An interesting functionalization of biomimetic HA coat-
ings on Ti alloys was developed by loading BPs. To this aim, 

different methods of loading BPs into CaP coatings have 
been proposed. The results of a comparative study indicated 
the coprecipitation method to be the best one to control 
the release profile of alendronate, which is incorporated 
in the inner layers of the coatings (136). Furthermore, BPs 
and antibiotics were incorporated simultaneously into the 
same coating, with the aim to provide a local release of the 
two different drugs. The results indicated that the presence 
of the BP, which was found to bind to the coating surface, 
does not affect the sustained release of antibiotics, which 
was suggested to provide improved stability of the implant 
and reduced risk of associated infections (137). Ti coatings 
of BP-containing CaPs have been obtained also using matrix-
assisted pulsed laser evaporation which, in contrast to other 
physical techniques, allows the transferring of organic or bio-
logical materials (125, 127, 138). In vitro tests on HA coatings 
with increasing alendronate content showed a significant de-
crease of osteoclast proliferation and decrease of caspase-3. 
The analysis of phalloidin staining performed after 14 days of 
osteoclast culture confirmed the significant reduction of the 
cell number on the alendronate-containing coatings, as can 
be seen in Figure 5 (138).

Biomimetic CaP coatings have also been used as BMP 
delivery systems in successful spinal arthrodesis. The system 
provides a sustained, localized release of BMP into the fusion 
site (139).

The first proposed CaP supersaturated solution was the 
simulated body fluid (SBF) solution proposed by Kokubo et al 
(140), which had an ionic composition similar to that of hu-
man plasma. Since then, many studies have been performed 
with the aim of accelerating the deposition of a homoge-
neous CaP layer (141-144). Chemical or physical modification 
of the metal surface can accelerate deposition and promote 

Fig. 5 - Phalloidin staining of osteo-
clast cultures after 24 hours from 
seeding on bare Ti (A) and hydroxy-
apatite coatings with different alen-
dronate contents (B-D) (0, 3.9 and 
7.1 wt%, respectively). Scale bars = 
20 µm. Reproduced with permission 
from ref. (138). Copyright 2009 Else-
vier Ltd.
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adhesion of the coating. A multistep alkali treatment followed 
by heat treatment is the most common procedure to induce 
the formation of sodium titanate on a Ti surface, which re-
sults in the formation of a chemical bond between substrate 
and coating (145). The topography of the metallic surface is 
also very important and can be modified in a controlled way 
with different methods (141), including simple physical or 
chemical etching of the surface. Acid etching is very widely 
used because it is the standard surface-cleaning procedure 
for Ti substrates, and at the same time, it is able to generate 
rough surfaces. Lu et al (142) demonstrated that nitric acid 
treatment significantly increases Ti surface energy, and favors 
the CaP heterogeneous nucleation process on the metallic 
surfaces through the reduction of the net interfacial energy.

Recently, coating of Ti-based implants with an anodic TiO2 
nanotube layer has been proposed to enhance the formation 
of apatite (146). Furthermore, thanks to their tubular nature, 
these coatings are good candidates for the “alternative im-
mersion method,” which is based on preloading the coatings 
with synthetic HA. This method results in a significant pro-
motion of apatite formation, and the resulting coatings may 
exhibit improved osteoconductivity while retaining a strong 
bond with the Ti metal substrate (146).

Variations in composition of the calcifying solution can 
be used to modify the chemical, structural and morphologi-
cal characteristics of the coatings, as well as to accelerate the 
deposition process (147). A highly effective method to obtain 
a fast biomimetic deposition of nanocrystalline HA onto me-
tallic substrates has been developed, using a slightly super-
saturated CaP solution, with a simplified ionic composition 
compared with that of SBF. The simplified CaP solution (2.5 
mM Ca2+, 25.5 mM Na+, 2.5 mM PO4

3-, 5.0 mM Cl- and 18 mM 
HCO3

-) yields the deposition of a uniform CaP coating on Ti 
alloy substrates in a few hours (130, 148). In contrast to other 
fast deposition solutions, which generally lead to deposition 
of an amorphous material, the coating obtained with the 

new formulation consists of nanocrystalline apatite. Cylindri-
cal samples for in vivo tests (Fig. 6) display a homogeneous 
coating after 6 hours of exposure to the calcifying solution us-
ing specially designed supports. The results of implantation in 
rabbit cortical bone defects demonstrated that the presence 
of nanocrystalline apatite accelerated bone ingrowth around 
the implant (131).

Recently, an interesting study presented enzymatic de-
composition of urea as a means to increase the pH of the 
calcifying solution during deposition. It was found that ure-
ase, as well as calcium and phosphate concentration, is a 
major factor in controlling nucleation and morphology of the 
coating, resulting in flake-like CaP crystals and nano-sized  
crystals (149).

Scaffolds

The advancement of regenerative medicine requires 
new complex materials with 3D porous structures, able 
to host living cells. Ideal scaffolds should be biodegrad-
able and porous, with interconnected porosity to allow 
cell colonization, revascularization and a suitable supply 
of nutrients and oxygen (10). In other words, the scaffold 
must mimic the extracellular matrix (ECM) to promote cell 
attachment, proliferation, differentiation and normal bone 
growth during scaffold degradation (150). The ideal bioma-
terial must further exhibit suitable mechanical and degra-
dation properties.

While many synthetic polymers have been proposed as 
components of 3D scaffolds for bone repair (151, 152), a bio-
mimetic scaffold should be close to the biological tissue also 
in terms of composition. CaPs offer a suitable interface, and 
have the advantage of unlimited availability (10). However, 
the excellent biocompatibility and osteoconductivity of CaPs 
are not matched by adequate mechanical properties. The 
mechanical performance of CaP scaffolding materials can be 

Fig. 6 - Scanning electron microscopy (SEM) micrographs of the homogeneous coating obtained on Ti13Nb11Zr cylindrical specimens after 
just 6 hours of exposure to the slightly supersaturated Ca/P solution. The coating consists of nanocrystalline apatite. Reproduced with 
permission from ref. (131). Copyright 2008 Elsevier Ltd.
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improved by addition of natural biological components – in 
particular, protein materials, such as collagen or fibrin, and 
polysaccharidic materials, such as glycosaminoglycans, chito-
san and alginates (153, 154).

Porous scaffolds of gelatin with different inorganic phase 
(HA) contents were prepared using an optimized method 
based on foaming and freeze-drying (Fig. 7) (155). Micro-
computed tomography reconstructed images indicated that 
the properties of the scaffolds can be tailored by varying the 
amount of inorganic phase from 0 to 50 wt%. In particular, 
compositions up to 30 wt% HA yield scaffolds characterized 
by very high interconnectivity and porosity, with a mean pore 
size in the range 100-300 µm, whereas higher inorganic phase 
content provoked a reduction of these parameters, as well 
as a significant increase of the compressive modulus and col-
lapse strength. Three-dimensional scaffolds with graded com-
position were also developed to mimic the different zones of 
the osteochondral region. The scaffolds were obtained as-
sembling layers containing different amounts of polymers 
and HA nanocrystals (156, 157).

A supercritical CO2 foaming method has recently been ap-
plied for preparing porous scaffolds by adding HA nanopar-
ticles as filler to the polymeric matrix of polycaprolactone 
blends with different molecular weights (158). Foams with dif-
ferent structural and mechanical properties were obtained us-
ing polycaprolactone samples of different molecular weights 
and by varying the pressure or filler amount. Increasing the 
pressure provoked a decrease in pore size, even if porosity 
was increased. Adding apatitic nanoparticles to polymeric 
blends reinforced the mechanical properties, but reduced po-
rosity and also pore size. Moreover, the molecular weight of 

polycaprolactone had an appreciable influence on the mor-
phology of the scaffolds.

In an attempt to imitate the complex hierarchical structure 
of bone, as well as its composition, many studies have recent-
ly focused on the addition of CaP ceramics in fibrous compos-
ites formed using the electrospinning technique (159, 160). 
Thomas et al fabricated nanofibrous scaffolds containing up 
to 20% of inorganic phase through co-electrospinning of bio-
composite fibers of collagen type I and nano HA (161). The 
nanocomposite fibrous matrices displayed improved me-
chanical properties and increased surface roughness with the 
increase in nano HA content. Since then, the electrospinning 
method has been improved to obtain electrospun polymeric 
nanofibers containing well-dispersed inorganic nanoparticles. 
A recent method encompasses the use of a special triaxial 
needle: mixing calcium and phosphate aqueous solutions in 
an intermediate needle yields CaP nanoparticles that imme-
diately after precipitation are dragged by the outer polymeric 
solution and incorporated directly in the electrospinning jet, 
before nanofiber formation. Gelatin electrospun mats can 
contain different amounts of nanoparticles well dispersed 
throughout the fiber length (162).

To produce custom-made bone substitutes, a promis-
ing strategy is a rapid-prototyping technique through which 
complex physical models can be fabricated starting from 
3D clinical images. Several processes and types of equip-
ment are nowadays available to produce such complex 3D 
shapes, the main one being the additive fabrication method, 
usually based on a layer-by-layer construction (163). Three-
dimensional printing has been revealed to be a cheaper tech-
nique compared with manufacturing individual prototypes by 

Fig. 7 - Scanning electron microsco-
py (SEM) micrographs of gelatin-HA 
3D porous scaffolds with different 
HA contents: 0 wt% (A), 30 wt% (B) 
and 50 wt% (C). The higher mag-
nification image of (C) shows the 
microporous structure of the cell 
walls (D). Reproduced with permis-
sion from ref. (155). Copyright 2013 
Wiley.
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subtractive processes. The possibility of using a low-cost 3D 
printer to produce a bone substitute in a polylactic acid/nano-
HA composite material has recently been explored (164). The 
proposed technology ensured a high degree of repeatability 
in terms of quality and properties of the polymer composite 
filament and in terms of the 3D-printed final parts. The mate-
rial processing allowed a good dispersion of the filler in the 
matrix, and the composite material was successfully printed, 
showing a combination of good mechanical properties and 
ease of creation.

A different approach, which exploits the CPC chemistry, 
has been proposed to synthesize scaffolds with tailored ar-
chitectures at room temperature using 3D printing (163). The 
setting reaction of the CaP cement, such as that between 
α/β-TCP powder and phosphoric acid which yields brushite, 
causes hardening of the samples during printing, which results 
in complex 3D structures with a dimensional accuracy of ±  
200 µm (165, 166).

Deville et al (167) proposed a HA porous scaffold with a 
layered arrangement that resembles nacre. These authors 
used freezing as a tool to develop a variety of complex po-
rous and layered hybrid materials (168). In particular, direc-
tional freezing of an aqueous HA suspension, followed by ice 
sublimation and sintering, results in a multilayered structure 
characterized by well-defined pore connectivity, as well as 
open and unidirectional porosity. This approach has recently 
been implemented in the development of a bidirectional 
freeze-casting technique to fabricate large-scale lamellar 
structures (169). The two different temperature gradients 
provide a graded nucleation and propagation of ice crys-
tals, which gives rise to the assembling of HA particles into 
aligned lamellar structures. The resulting porous scaffolds 
exhibit a nacre-like structure with a long-range order at the 
centimeter scale.

Scaffolds can be functionalized through loading of ac-
tive substances on their surface or within the bulk structure 
(61, 170). In particular, BPs have been loaded on CaP based 
scaffolds through adsorption from solution, within the bulk 
structure as scaffold components, and through decoration of 
liposomes which were then incorporated into the scaffolds 
(171-173) (Fig. 8). Bone regeneration was also reported to be 
effectively enhanced when scaffolds were functionalized with 
growth factors or their encoding genes (174).

Even better results can be achieved through multifunc-
tionalization, which is aimed at providing local delivery of 
active agents to promote a variety of functions, includ-
ing integration, osteoconduction and angiogenesis (175). 
Vancomycin-loaded gelatin and Si-doped HA 3D porous scaf-
folds fabricated by rapid prototyping were recently shown to 
severely inhibit bacterial growth around the implant (176). 
Sun et al (177) investigated cell responses to growth factors 
released from a 3D biodegradable porous CaP scaffold and 
found that angiogenesis and osteogenesis were promoted 
by a combination of a gradient of 3 different growth factors 
released from the multilayered scaffold, more readily than 
by single growth factors. Moreover, a study of codelivering 
anabolic and anticatabolic agents – namely, BMP-2 and zole-
dronate – using a biomimetic collagen-HA scaffold, confirmed 
the ability of the BP to enhance bone formation promoted by 
the growth factor (178).

Concluding remarks

Innovative approaches based on biomimetic strategies 
lead to significant improvements in the performance of CaP 
biomaterials for hard tissue repair. Further exciting progress 
has been achieved thanks to the relevant and continuously 
increasing amount of research on CaPs functionalized with 
ions, molecules, macromolecules, drugs and growth factors. 
Modified CaPs can be utilized as-prepared or as raw materi-
als for the preparation of bone cements and coatings, as well 
as scaffolds for regenerative medicine. Moreover, CaP-based 
biomaterials are gaining increasing relevance as potential de-
livery systems for local administration of therapeutic agents.
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