Abstract
One of the hardest tasks in developing or selecting grafts for bone substitution surgery or tissue engineering is to match the structural and mechanical properties of tissue at the recipient site, because of the large variability of tissue properties with anatomical site, sex, age and health conditions of the patient undergoing implantation. We investigated the feasibility of defining a quantitative bone structural similarity score based on differences in the structural properties of synthetic grafts and bone tissue.
Two biocompatible hydroxyapatite porous scaffolds with different nominal pore sizes were compared with trabecular bone tissues from equine humerus and femur. Images of samples’ structures were acquired by high-resolution micro-computed tomography and analyzed to estimate porosity, pore size distribution and interconnectivity, specific surface area, connectivity density and degree of anisotropy. Young’s modulus and stress at break were measured by compression tests. Structural similarity distances between sample pairs were defined based on scaled and weighted differences of the measured properties. Their feasibility was investigated for scoring structural similarity between considered scaffolds or bone tissues.
Manhattan distances and Quadrance generally showed sound and consistent similarities between sample pairs, more clearly than simple statistical comparison and with discriminating capacity similar to image-based scores to assess progression of pathologies affecting bone structure.
The results suggest that a quantitative and objective bone structural similarity score may be defined to help biomaterials scientists fabricate, and surgeons select, the graft or scaffold best mimicking the structure of a given bone tissue.
J Appl Biomater Funct Mater 2016; 14(3): e277 - e289
Article Type: ORIGINAL RESEARCH ARTICLE
DOI:10.5301/jabfm.5000283
Authors
Giuseppe Falvo D’Urso Labate, Francesco Baino, Mara Terzini, Alberto Audenino, Chiara Vitale-Brovarone, Patrick Segers, Rodolfo Quarto, Gerardo CatapanoArticle History
- • Accepted on 04/02/2016
- • Available online on 20/05/2016
- • Published online on 26/07/2016
Disclosures
This article is available as full text PDF.
Introduction
Bone grafting procedures are becoming a serious burden for health care systems and insurance companies, as testified by the ca. US$2.5 billion paid annually for the 1.5 million bone graft procedures performed in the United States alone (1). Scarcity of bone substitutes and morbidity at the implant site increase costs and worsen quality of life for patients. In practice, autologous bone grafting, the gold standard for bone replacement surgery, is limited by the scarce availability of bone and morbidities at donor sites (2), whereas the use of bone bank allografts is limited by disease transmission and poor osteoinductivity (3). Alternatively, grafts made of metals, ceramics and polymers may be used, but the lack of biochemical cues and osteogenic cells makes them poorly osteoconductive and osteogenic, and limits their osteointegration (4). Resorbable porous scaffolds functionalized with biochemical cues and engineered with patients’ osteogenic cells hold promise to repair large bone defects, but have not proven their clinical efficacy yet (5). The unsatisfactory outcome of current treatments suggests that there is room for improving the selection criteria for, and even the properties of, artificial grafts and scaffolds. The biochemical and chemical properties of grafts or scaffolds for bone tissue engineering (BTE) are known to strongly affect their interactions with cells and integration with the surrounding tissues (6). However, clinical success of implanted grafts is also largely dependent on their structure and mechanical properties, particularly for the replacement of heavy load-bearing bones such as the femur (7). In fact, grafts and scaffolds with similar trabecular architecture (e.g., the connections and alignment of trabeculae) and mechanical behavior to the bone tissue they have to replace are expected to integrate well with the patient’s mechanical response to environmental challenges right after implantation (7). Grafts and scaffolds with a large fraction of open and interconnected pores and a large pore surface area are also expected to favor cell migration and colonization and to integrate well with the surrounding tissues. In tissue engineering, there is a general consensus on the importance of having large pores in the scaffold to enable cell migration into the scaffold, and small pores to supply nutrients and biochemical cues to cells anywhere in the scaffold (8).
One of the hardest tasks in developing or selecting the graft (or scaffold) for direct substitution, or tissue engineering, of a specific bone piece is possibly to match the structural and mechanical properties of tissue at the recipient site (9). The first challenge is to characterize quickly, reliably and nondestructively the specific bone that needs to be replaced, because of the large variability of tissue properties with anatomical site, sex, age and general health conditions of the patient undergoing implantation (10-11-12). The second challenge is to develop quantitative and objective criteria to compare the structure of natural bone tissue and artificial substitutes. Today, state-of-the-art imaging and postprocessing techniques permit the gathering of accurate quantitative information about grafts, scaffolds and tissue structure nondestructively and noninvasively, and make it possible to quickly characterize natural bone tissues in vivo (13). Bone imaging techniques are already used in clinics to monitor bone structure and assess the occurrence and progression of bone pathologies. To ease the assessment of pathological states, an overall score has recently been introduced, termed the trabecular bone score (TBS), that evaluates gray-level pixel variations in 2-dimensional (2D) dual-energy X-ray absorptiometry images of the bone providing information on its 3-dimensional (3D) bone trabecular architecture (14). The TBS correlates well with histological section analysis and eases diagnosis and prognosis with little discomfort to patients (14). In contrast, so far little work has been done to exploit the possibilities of imaging techniques and compare natural and artificial bone structures on quantitative and objective grounds. To the best of the authors’ knowledge, only one score has been proposed to evaluate structural and mechanical properties of real scaffolds against ideal expectations for BTE scaffolds in the repair of a segmental defect of the diaphysis of a 70-kg patient’s tibia (15). No objective and quantitative score has been proposed yet for comparing the structure of an artificial graft (or scaffold) with the specific bone tissue that it should replace.
This study aimed at investigating the feasibility of developing a quantitative bone structural similarity score (BoSS) useful for comparing the structure of artificial grafts, or scaffolds, with one another and with bone tissues. The use of the BoSS could allow for a preliminary screening of available graft or scaffold structures to better match the specific bone to be replaced. It could also guide graft or scaffold fabrication to match natural bone tissues. For this purpose, the structural and mechanical properties of 2 commercial hydroxyapatite (HA) scaffolds with different nominal pore sizes were characterized, as was trabecular bone tissue harvested from equine humerus and femur. As a proof of principle, a minimal number of 8 independent properties were selected to characterize the sample structure. Sample images were acquired nondestructively by high-resolution micro-computed tomography (µCT), and analyzed with state-of-the-art computational techniques to estimate porosity, pore size distribution and interconnectivity, specific surface area, connectivity density and degree of anisotropy. Young’s modulus and stress at break were characterized by compression tests. Structural distances between each pair of samples were defined that account for the difference of all measured properties, and were investigated as possible criteria for demonstrating structural similarities between sample pairs, hence as BoSS. The Manhattan distances and Quadrance showed similarities (vs. dissimilarities) between sample pairs more clearly than did simple statistical comparison, with a discriminating capacity similar to that of the TBS. This suggests that a quantitative bone structural similarity score may be developed to help biomaterials scientists fabricate, and surgeons select, biomimetic grafts or scaffolds matching the structure of a given bone tissue.
Materials and methods
Equine trabecular bone conserving the type I collagen component and harvested from horse humerus (EHT; Osteoplant®, OMC50b) and femur (EFT; Osteoplant®, OSP01) was kindly provided by Bioteck (Arcugnano VI, Italy). Commercial porous sintered HA scaffolds (EngiPore™, PFS015005-23-00) with either an open pore (OPHA) or a narrow pore (NPHA) structure were kindly provided by Finceramica (Faenza, Italy). Cylindrical specimens, 10-mm diameter and 10-mm length, were obtained from each sample by core-cutting with a diamond core drill, and their structural and mechanical properties were characterized as described below. All measurements were performed in triplicate (i.e. n = 3).
Structure characterization
High-resolution µCT images of sample structures were acquired with a SkyScan 1174 (Microphotonics Inc., Allentown, PA, USA) operated at 50-kV source voltage, 800-µA current and a sample-to-detector distance of 40 mm. To exclude any region near the boundaries possibly altered by the core-cutting procedure, a cylindrical volume of interest (VOI) of 7-mm height and 9-mm diameter was selected at the center of each sample. The voxel (i.e., the volume element) size was typically ≤9.23 × 9.23 × 9.23 µm, depending on the exposure time per projection and the filters used. Images of layers perpendicular to the sample axis were reconstructed from raw µCT data through the standard filtered backprojection algorithm (16) with the software N-Recon and CT-Vox (Microphotonics Inc., Allentown, PA, USA). Solid material pixels were separated from void pixels based on their gray-scale value (i.e., were segmented) with a lower 80-99 gray threshold, and an upper 255 gray threshold. A binary 3D representation of the structure of the VOI (i.e., image rendering) was obtained from the 2D layers with CT-An software (Bruker, Billerica, MA, USA), More detailed information may be found elsewhere (8, 17-18-19). The structural properties of the samples were estimated with the same software as briefly described below.
Porosity (ε)
Scaffold porosity is defined as the fractional sample volume occupied by void spaces (i.e., pores). In this study, the porosity ε was estimated as follows:
where
Pore size distribution (f(dp))
The pore size distribution of a scaffold is defined as the fractional number of pores with size found within a set interval (or class). In this study, any group of void voxels surrounded by solid voxels was considered a pore. The pore size distribution was calculated according to a model-independent 2-step procedure. Firstly, the medial axis of all void structures was identified (i.e., skeletonization). Secondly, a “sphere-fitting” measurement was made for all of the voxels lying along each axis. The local size associated to a point on each axis was defined as the average diameter of the spheres which fulfilled the following 2 conditions: the sphere enclosed the point, but the point was not necessarily the center of the sphere; the sphere was entirely enclosed in the void structure, but it was entirely bounded within the solid surfaces. The local sizes of void structures thus obtained were distributed into classes by counting the fractional number of local sizes falling in each class. The size range of each class was set equal to twice the size of the voxel of the considered µCT scan.
Pore interconnectivity (Ip)
Pore interconnectivity is defined as the fraction of the void volume in a scaffold that is accessible from the outer surface (21). In this study, pore interconnectivity was expressed as follows (21):
where
Specific surface area (av)
The specific surface area measures the solid surface area available for cell attachment and tissue deposition per unit scaffold volume. In this study,
where
Connectivity density (β)
The connectivity, Eu.Conn, characterizes the redundancy of trabecular connections and thus the degree to which parts of the sample are multiply connected. It is derived from the Euler characteristic, EC, which accounts for the number of cavities surrounded by solid material. Description of the evaluation of EC from binarized images is beyond the scope of this work, and details can be found elsewhere (23). The connectivity of each sample was calculated as:
and provided a measure of the number of connections that must be severed to break the structure down into 2 separate parts (18). To characterize sample structure independent of its size, the connectivity is generally normalized with respect to the sample volume in terms of the connectivity density,
where
Degree of anisotropy
The degree of anisotropy, DA, is a measure of the preferential alignment of solid struts in the scaffold along particular directions. In this study, the DA was estimated according to the mean intercept length (MIL) analysis. The MIL is found by sending a line through a 3D image volume containing binarized objects at any 3D orientation, and by dividing the length of the test line through the VOI by the number of times that the line passes through, or intercepts part of, the solid material in any direction. The MIL distribution is calculated by superimposing parallel test lines in different directions on the 3D image. The MIL ellipsoid is calculated by fitting the directional MIL to a directed ellipsoid using a least-square fit. The geometrical degree of anisotropy, DA, is calculated as the complement to one of the ratio between the minimal and the maximal radius of the MIL ellipsoid. Detailed description of the analysis is beyond the scope of this work, but may be found in (18). A DA value of 0 indicates overall scaffold or tissue isotropy. A DA value of 1 indicates overall scaffold or tissue anisotropy.
Mechanical characterization
The mechanical properties of samples were characterized with uniaxial unconstrained compressive tests (24, 25) performed along the axis of the cylindrical specimen with an MTS QTest Elite 10 compression test machine (MTS Systems Corp., Eden Prairie, MN, USA) equipped with an MTS Load Cell, model S-beam, with a 500-N force cell and 2.09 mV/V sensitivity (MTS Systems Corp., Eden Prairie, MN, USA). Tests were performed without preconditioning, at room temperature in air, by lowering the compression bar at 5 mm/min, and by sampling data at 5 Hz. The mechanical properties reported hereafter were estimated as briefly described below.
Compressive Young’s modulus (Ec)
The Young’s modulus, Ec, measures the elastic mechanical response of the sample to small challenges. Scaffolds with Ec close to the specific bone they have to replace may be expected to provide for an elastic mechanical response mimicking that of the missing bone right after implantation (15). Ec was estimated from the experimental stress-strain curves as the limit to null strain of the uniaxial compressive stress to strain ratio.
Ultimate compressive strength (σB)
The ultimate compressive strength, σB, is the value of the uniaxial compressive stress at which the scaffold breaks. It provides for a measure of the maximal load that the scaffold tolerates without breaking. σB was estimated from the experimental stress-strain curve of each scaffold at the conditions under which the sample broke.
Statistical analysis
Data are reported as means ± standard deviation. Prior to performing the statistical analysis, the Gaussian distribution of data was verified with the Kolmogorov-Smirnov test (26). Statistical significance of differences was determined with Student’s t-test with significance set at a p value of <0.05. Statistical tests were performed with Microsoft Excel® software (Microsoft Corp., Seattle, WA, USA).
Pore size distribution was quantitatively characterized in terms of its first 4 moments (27) – i.e., mean
Bone structural similarity score
In this study, the BoSS was intended as a multiparametric tool for comparing the structure of artificial bone substitutes with one another and with bone tissues. A pair of samples was assumed to be structurally similar when the structural distance between them was minimal. The distance between samples along each axis of the 8-dimensional space of the investigated sample properties (ε, Ip, av, β, DA, E, βB), di,h-k, was defined as the absolute difference of the i-th mean property value pi between the h-th and the k-th sample, as follows:
The difference of the pore size distributions f(dp) between the h-th and the k-th sample was accounted for in terms of the dissimilarity index, along the lines of what is suggested in White (29):
where
With the exception of the pore size distribution, each property difference was scaled with respect to the experimental standard deviation of that property estimated over all the measurements performed, σi, as follows (30):
This permitted the minimizing of the bias caused by the different scales of some property values. As suggested by van Cleynenbreugel et al (15), the effect of weighting the property differences to account for the importance of the property for scaffold interactions with cells and tissues was also investigated. As a proof of concept, the importance factor assigned to each property was set as equal to the value suggested in van Cleynenbreugel et al (15). In this investigation, fewer sample properties were characterized and compared than in van Cleynenbreugel et al (15). For this reason, the weight associated to the i-th property, wi, was obtained by normalizing the corresponding importance factor with respect to the sum of factors over all investigated properties and by making them sum up to 1, as shown in
Importance factors and weights evaluated as suggested in van Cleynenbreugel et al Reference (15)
Parameter | Importance factor | Weight |
---|---|---|
Porosity (%) | 5 | 0.151 |
Pore size distribution (%) | 5 | 0.151 |
Pore interconnectivity (%) | 5 | 0.151 |
Specific surface area (mm-1) | 3 | 0.091 |
Connectivity density (mm-3) | 1 | 0.031 |
Degree of anisotropy (-) | 2 | 0.061 |
Young’s modulus (MPa) | 7 | 0.212 |
Compressive strength (MPa) | 5 | 0.151 |
The weighted difference of the pore size distributions between sample pairs was estimated as follows:
Two structural distances were defined that could be used as BoSS. They accounted, each to a different extent, for the differences of the 8 investigated properties. These are the Manhattan distance and the Quadrance. The Manhattan distance, MD, is defined as the sum of the scaled/weighted property differences, as follows (31):
The Quadrance, Q, is defined as the sum of the squared scaled/weighted property differences, as follows (32):
Hereafter, the subscripts
The BoSS criterion compares 2 samples at a time, and is based on the assumption that the shorter the structural distance between the 2 samples, the more similar is their structure. The discriminating capacity of each considered structural distance was evaluated as the ratio of the difference between the maximal and the minimal structural distance values to the minimal, for the samples considered in this study. The feasibility of the definitions of structural distance investigated in this study for serving as BoSS was evaluated with respect to the absolute value of the structural distance they bring (i.e., the lower, the more feasible the distance definition is) and their discriminating capacity (i.e., the efficacy with which the considered structural distances discriminate between sample pairs). Their discriminating capacity was also compared to that of the TBS, the only score currently used in clinics for assessing the changes of bone tissue structure caused by pathological states (14, 33).
For the sake of comparison, the similarity of samples to the ideal scaffold for a bioengineered diaphyseal bone of the tibia was also evaluated in terms of the total score ScV, estimated as proposed by van Cleynenbreugel et al (15). Briefly, a score ranging from 0 to 10 was assigned to each measured property. Its value was obtained by dividing the value of the property of the samples by that assigned to the ideal scaffold, and by normalizing this value to 10. As done in the work by van Cleynenbreugel et al (15), ideal values or limits to admissible values of the considered properties were set as equal to the average values (for av and β) or the lower and upper values (for Ec and σB) experimentally measured for cancellous bone of human tibial condyles. Consequently, the score assigned to the specific surface area was set as equal to 10 for av in excess of 3.95 mm-1, that for the connectivity density, β, was set as equal to 0 for β values higher than 6 mm-3, that for the Young’s modulus, Ec, was set as equal to 0 when Ec was outside the 24,500-34,300 MPa range, and that for the ultimate compressive strength, σB, was set equal to 0 when σB was outside the 183-213 MPa range (10).
The score for the pore size distribution was evaluated as the percentage number of pores with size from 100 to 800 µm scaled to 10. In fact, it is generally accepted that 100 mm is the minimal pore size for osteoconduction, and 800 mm is the maximal admissible pore size to prevent weakening of scaffold mechanical properties (15). In van Cleynenbreugel et al (15), ideal scaffolds are assumed to be isotropic, and isotropy is assumed to be a valuable property rather than anisotropy, as done in this study. For this reason, the associated score was evaluated as (1-DA) and normalized to 10. Each score was multiplied by its associated weight, as reported in
Results
3D rendering of exemplary sample digital images acquired by micro-computed tomography (µCT):
Sample properties estimated by micro-computed tomography (µCT) imaging:
Sample properties estimated by compression tests:
The compressive Young’s modulus varied by a factor of 2, from about 100 to 200 MPa, as shown in
The pore size distributions of the investigated samples are shown in
Moments and bimodality of pore size distribution of the investigated samples
|
σ (mm) | α1 (-) | α2 (-) | b (-) | |
---|---|---|---|---|---|
|
|||||
EHT | 0.6870 | 0.2082 | -0.1711 | 0.168 | 0.325 |
OPHA | 0.8006 | 0.3944 | 0.2322 | -0.567 | 0.433 |
EFT | 0.4326 | 0.1998 | 0.1623 | 0.049 | 0.337 |
NPHA | 0.4158 | 0.2107 | 0.4353 | -0.443 | 0.465 |
Pore size distribution of the investigated samples:
Structural distances between sample pairs assessed according to Manhattan distance (MD) or Quadrance (Q)
EHT | OPHA | EFT | NPHA | |
---|---|---|---|---|
MD, is reported in the area below the diagonal, and the Quadrance, Q, in the area above the diagonal. Minimal distances are reported in bold to show structural similarity of the corresponding sample pair. | ||||
EHT = equine humerus bone tissue; OPHA = open pore hydroxyapatite; EFT = equine femur bone tissue; NPHA = narrow pore hydroxyapatite. | ||||
After scaling: MDSD and QSD | ||||
EHT | - |
|
15.86 | 16.96 |
OPHA |
|
- | 18.94 | 15.09 |
EFT | 9.08 | 10.43 | - |
|
NPHA | 9.49 | 9.01 |
|
- |
After scaling and weighting: MDSDW and QSDW | ||||
EHT | - |
|
0.40 | 0.39 |
OPHA | 1.07 | - | 0.54 | 0.36 |
EFT | 1.36 | 1.58 | - |
|
NPHA |
|
1.18 |
|
- |
In
Weighted and total score (SvC) of each sample
Parameter | Sample identity | |||
---|---|---|---|---|
EHT | OPHA | EFT | NPHA | |
Values of the SvC score defined in Reference 15 were obtained as described in “Materials and methods.” | ||||
EHT = equine humerus bone tissue; OPHA = open pore hydroxyapatite; EFT = equine femur bone tissue; NPHA = narrow pore hydroxyapatite. | ||||
Porosity (%) | 8.21 | 6.79 | 6.54 | 7.30 |
Pore size distribution (%) | 9.00 | 5.20 | 9.24 | 9.29 |
Pore interconnectivity (%) | 10.0 | 9.97 | 10.0 | 10.0 |
Specific surface area (mm-1) | 9.60 | 10.0 | 10.0 | 10.0 |
Connectivity density (mm-3) | 0.00 | 0.00 | 0.00 | 0.00 |
Degree of anisotropy (-) | 4.66 | 9.69 | 2.84 | 9.18 |
Young’s modulus (MPa) | 0.00 | 0.00 | 0.00 | 0.00 |
Compressive strength (MPa) | 0.00 | 0.00 | 0.00 | 0.00 |
Total score SvC | 5.28 | 4.83 | 4.98 | 5.50 |
Discussion and conclusions
Medical imaging techniques such as µCT and nuclear magnetic resonance are currently used to guide the fabrication of grafts and scaffolds that match the volume and macroscopic anatomical shape of the bone piece that needs to be replaced. However, the innovative fabrication techniques that have been introduced in recent years have mainly been used to develop scaffolds (or grafts) with ordered, mostly single-pore, architectures balancing the desired mechanical function and the transport properties enabling biofactor delivery to cells (34). This has advanced our understanding of how the structure of porous scaffolds harnesses the body’s healing response, but it has not led to optimal, or even satisfactory, treatments yet (35). Research performed in the last decade has provided, and is still providing, evidence of the important role played by scaffold microscale to nanoscale structure and its mechanical properties, regarding the response of cells and tissue, prior to and after implantation. Structure and mechanical properties of the cellular microenvironment may influence cell proliferation, differentiation and death, play a role in the morphogenesis of some tissues and may even influence the functioning of the immune system of the host (36). In spite of these studies, much is still to be elucidated about the mechanisms of how scaffold structural and mechanical properties – and their interplay with scaffold biochemical and chemical properties, affect graft integration and tissue regeneration. It is generally envisioned that grafts and tissue engineering scaffolds mimicking the natural bone structure hold the greatest promise of success for repairing bone tissue, restoring mechanical function and enabling tissue integration (37).
The aim of this study was to investigate the feasibility of defining a quantitative bone structural similarity score to help select the most suitable scaffold or personalize its design to match the structure of a given bone tissue, thus favoring a successful bone replacement procedure. In spite of the large amount of information on the physical-mechanical properties of synthetic grafts and tissue engineering scaffolds (8), and on their interactions with cells and tissues (38), to the best of the authors’ knowledge, so far only van Cleynenbreugel et al (15) have attempted to define a quantitative score to evaluate scaffold structure and to guide the design of bone grafts or the engineering of a biological bone substitute. In their approach, the scaffold structural properties were scored and weighted somewhat arbitrarily against requirements assumed ideal for BTE scaffolds for the reduction of a diaphyseal defect of the tibia.
In this study, it was assumed that the multiparametric characterization of independent scaffold and tissue structural properties could represent a sound basis for developing a quantitative BoSS to enable the objective evaluation of the extent to which graft or scaffold structure matches the bone that they have to replace. Eight independent sample properties were selected which determine, or are relevant to, its structural and mechanical properties and its capacity to transport nutrients and metabolites to cells and to interact with cells and tissue. For the proof of concept, they were thought of as representing the minimal number of properties to characterize graft or scaffold structure. In particular, high scaffold porosities are generally desirable because they have been shown to promote in vitro the proliferation of osteoblasts and stem cells, and in vivo the recruitment and penetration of osteogenic cells from the surrounding bone tissue and scaffold neovascularization (8). However, too high a porosity may weaken the scaffold’s mechanical resistance and may compromise its structural integrity when implanted (8). Pore size distribution influences cell migration and proliferation and the transport of nutrients to (and waste metabolites away from) cells in vitro, and tissue in-growth in vivo (8, 39).
There is general agreement that an ideal scaffold for tissue engineering should exhibit a bimodal pore size distribution with pores from ca. 100 to 800 µm, which should permit osteogenic cells to migrate and proliferate into the scaffold, and pores smaller than ca. 10 µm, which should enable the physiological supply of nutrients and metabolic cues to (and waste metabolites away from) osteogenic cells (8). However, experimental evidence suggests that the optimal pore size distribution depends on the cell type (and size) and the application. In fact, it has been reported that there is an optimum pore size range of 5-15 µm for fibroblast in-growth, of 40-100 µm for osteoid in-growth and of 100-300 µm for bone regeneration (40).
A high pore interconnectivity is key to cell migration, oxygen and nutrients transport, waste product disposal, new blood vessel formation and tissue in-growth (41). Increasingly interconnected pores have been shown to improve chondrocyte proliferation and metabolic activity in chitosan sponges (42), and chondrocyte attachment and proliferation in porous poly(lactic-
The scaffold Young’s modulus has even been shown to influence the rate and the extent to which bone tissue forms within a scaffold (50). In tissue engineering, stiffer scaffolds have been shown to promote adhesion, spreading and proliferation of mesenchymal stem cells, fibroblasts and endothelial cells (51, 52). Engler et al (53) demonstrated that mesenchymal stem cells cultured on polyacrylamide gels could differentiate themselves into neurons, myoblasts and osteoblasts on increasingly stiffer gels.
The selected properties were characterized for 2 exemplary natural bone tissues and synthetic artificial scaffolds differing in their physiologic function or preparation procedure. For the proof of concept, equine tissue was used because large mammals are good preclinical models of human therapies and may benefit themselves from a biomimetic personalized BTE approach. Two structural distances, based on the intersample differences of such properties, were investigated for their capacity to measure structural similarities and to discriminate between sample pairs as a qualifying criterion to serve as a BoSS.
For the possible use in clinics of a quantitative scaffold selection criterion, such as the BoSS, it is required that the properties of the tissue that needs to be replaced (and its man-made substitute) be consistently, quickly and noninvasively characterized. For this reason, 6 out of the 8 investigated properties were noninvasively and nondestructively characterized by high-resolution µCT. In the clinical setting, it may be envisioned that the mechanical properties of the patient’s bone tissue may also be estimated from its structural properties as characterized by µCT by means of available empirical correlations linking mechanical properties of a given bone to its structure (54) or by finite-element modeling (15, 55), once the average mechanical properties of the trabecular tissue of a given bone are known (56).
It could be argued that the resolution of the µCT used for this study was limited to 9.23 µm. However, based on literature information, the pore fraction with sizes below that detected by the µCT may be predicted to be less than 1.3% for bone tissue (63) and less than 0.7% for HA scaffolds (64), thus causing negligible bias in the characterization of the pore size distribution. The introduction in clinics of imaging techniques of higher resolution – e.g., nanocomputed tomography – will definitely improve on the accuracy of the structural distance estimates and the reliability of the BoSS criterion, with no discomfort to patients.
The fact that all or most of the investigated properties were significantly different among the tested samples suggests that a pure statistical comparison does not effectively reveal similarities (or discriminate) between scaffold and/or tissue pairs.
On the contrary, the capacity of the investigated structural distances to measure structural similarity and discriminate between sample pairs was comparable to, or even better than, that of the TBS. Consistent with their definition of distance, MD and Q are not limited in the value they may have, in contrast to the TBS. Nonetheless, QSDW and MDSDW yielded structural distance values comparable to TBS values for human bone tissue (14, 33). Studies on human cadaver vertebrae report discriminating capacities of the TBS up to 43% (33). However, a 17% discriminating capacity has been reported to suffice to discriminate between well-structured and altered trabecular bone tissue (14). The discriminating capacity of the structural distances investigated in this study was in the upper range of the TBS when the property differences were only scaled (i.e., MDSD and QSD), and was about 2 times higher when the property differences were scaled and weighted (i.e., MDSDW and QSDW).
Taken all together, the results obtained in this study suggest that it is possible to define an objective and quantitative BoSS that permits the demonstration of similarities and discriminates between given bone tissues and artificial scaffolds, and that may guide scaffold selection or fabrication for grafting, in the clinical setting, or for the engineering of personalized biological bone substitutes in vitro. The short intersample distance, high discriminating capacity and resulting sound similarities shown in
It should be noted that to prove the feasibility of defining a structural similarity score, only a few structural properties of scaffolds and tissues were considered. They were chosen as those clearly acknowledged to contribute to making a scaffold (or graft) similar to a given bone tissue and being independent of other properties. Although important to graft (or scaffold) and tissue behavior, some other properties (e.g., hydraulic permeability, trabecular thickness etc.) have not been explicitly accounted for, because they depend on, or may be gathered from, the considered properties. For instance, hydraulic permeability, a key feature for nutrients and oxygen transport, may be expected to be determined in the first approximation by porosity, pore size distribution and pore interconnectivity (20). Scaffold and tissue mechanical behavior was also characterized only in terms of Young’s modulus and stress at break in uniaxial compressive tests, because they determine scaffolds’ and tissues’ capacity to sustain body weight, and the former has been shown to affect cell behavior (50-51-52). The availability in the literature of these property estimates for many artificial scaffolds, grafts and tissues also enabled the validation of the values that were measured against experimental estimates. However, the values of the degree of anisotropy shown in
Another limit to the current BoSS definition is that no biochemical or chemical property was considered on the account of the proven biocompatibility and cytocompatibility and osteointegration capacity (65) of the HA scaffolds used. To permit a thorough comparison of scaffolds made of different biomaterials and to obtain information on how successfully a graft (or scaffold) might heal a bone defect, additional independent properties expressing their biocompatibility and cytocompatibility, their biodegradation kinetics (65), and capacity to interact with neighboring cells and tissues would have to be included in the score. This was beyond the scope of this preliminary study.
A systematic study of all measurable properties of available artificial grafts and scaffold and of bone tissues harvested from different anatomical sites of individuals varying by sex and age might permit a demonstration of those independent properties affecting their behavior to the greatest extent that should be included in the BoSS. Although theoretically possible, it is difficult to foresee that a structural similarity distance, such as a BoSS, between an artificial and a natural tissue would be null – i.e., that the 2 structures would be identical. A systematic study such as that prospected above might also permit the narrowing down of the range of values that the BoSS may practically have and defining a BoSS threshold below which an artificial scaffold or graft and a bone tissue might be considered structurally similar. In spite of the current limits and the work that still needs to be done, the results obtained thus far show that defining a BoSS is feasible and that it might help in the preliminary screening of available grafts or scaffolds, and to personalize and fine-tune graft or scaffold structural properties for the replacement of a given bone tissue. The BoSS could also help biomaterial designers exploit the possibility of fabricating scaffolds hierarchically structured as the natural bone from the nanoscale to the milliscale offered by innovative fabrication technologies such as solid free-form fabrication or bioplotting, as such or combined with more traditional techniques (34).
Acknowledgement
The authors wish to thank Dr. Paolo Giannoni (Department of Experimental Biology, University of Genova, Genova, Italy) for his invaluable comments on the manuscript.
Disclosures
-
1.
Jahangir AA Nunley RM Mehta S Sharan A Bone-graft substitutes in orthopedic surgery. AAOS. https://www.aaos.org/AAOSNow/2008/Jan/reimbursement/reimbursement2/ . Accessed December 3, 2015. -
2.
Meyer U Joos U Wiesmann HP Biological and biophysical principles in extracorporeal bone tissue engineering: Part I. 2004 33 325 332 -
3.
VandeVord PJ Nasser S Wooley PH Immunological responses to bone soluble proteins in recipients of bone allografts. 2005 23 1059 1064 -
4.
Martin I Miot S Barbero A Jacob M Wendt D Review: osteochondral tissue engineering. 2007 40 750 765 -
5.
Janicki P Schmidmaier G What should be the characteristics of the ideal bone graft substitute? 2011 42 Suppl 2 S77 S81 -
6.
Oryan A Alidadi S Moshiri A Maffulli N Bone regenerative medicine: classic options, novel strategies, and future directions. 2014 9 18 -
7.
Hu Y Shanjani Y Toyserkani E Grynpas M Wang R Pilliar R Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing: effect on structure and mechanical properties. 2014 102B 2 274 283 -
8.
Karageorgiu V Kaplan D Porosity of 3D biomaterial scaffolds and osteogenesis. 2005 26 5474 5491 -
9.
Mravic M Péault B James AW Current trends in bone tissue engineering. 2014 2014 1 5 -
10.
Burstein AH Reilly DT Martens M Aging of bone tissue: mechanical properties. 1976 58-A 1 82 86 -
12.
Marangalou JH Ito K Taddei F van Rietbergen B Inter-individual variability of bone density and morphology distribution in the proximal femur and T12 vertebra. 2014 60 213 220 -
13.
Jones JR Poologasundarampillai G Atwood G Bernard D Lee PD Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. 2007 28 1404 1413 -
15.
van Cleynenbreugel T Schrooten J van Oosterwyck H Vander Sloten J Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering. 2006 44 517 525 -
16.
Basu S O(N2 log2 N) filtered backprojection eeconstruction algorithm for tomography. 2000 9 10 -
17.
Nafei A Danielsen CC Linde F Hvid I Properties of growing trabecular ovine bone: Part I: mechanical and physical properties. 2000 82B 910 920 -
18.
Odgaard A Quantification of cancellous bone architecture. Boca Raton, FL CRC 2001:14.1-14.9. -
19.
Sandino C Koliczek P McErlain DD Boyd SK Predicting the permeability of trabecular bone by micro-computed tomography and finite element modeling. 2014 47 3129 3134 -
23.
Kiderlen M Estimating the Euler characteristic of a planar set from a digital image. 2006 17 1237 1255 -
26.
Razali NM Wah YB Power comparison of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. 2011 2 1 21 33 -
28.
Kenney JF Keeping ES Mathematics of statistics: Pt. I. 3rd ed. Princeton, NJ Van Nostrand 1954. -
29.
White MJ Segregation and diversity measures in population distribution. 1986 52 198 221 -
30.
Flury BK Riedwyl H Standard distance in univariate and multivariate analysis. 1986 40 3 249 251 -
32.
Wildberger NJ Divine proportions: rational trigonometry to universal geometry. Sidney, Australia Wild Eggs Books 2005. -
33.
Hans D Barthe N Boutroy S Pothuaud L Winzenrieth R Krieg MA Correlations between trabecular bone score, measured using anteroposterior dual-energy ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. 2011 14 3 302 312 -
35.
Ducheyne P Mauck RL Smith DH Biomaterials in the repair of sports injuries. 2012 11 652 654 -
39.
Gauthier O Bouler JM Aguado E Pilet P Daculsi G Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. 1998 19 133 139 -
40.
Yang S Kah-Fai L Zhaohui D Chee-Kai C The design of scaffolds for use in tissue engineering: Part I: traditional factors. 2001 6 679 689 -
41.
Guillemin G Meunier A Dallant P Christel P Pouliquen J Comparison of coral resorption and bone apposition with two natural corals of different porosities. 1989 23 7 765 779 -
42.
Griffon DJ Reza Sedighi M Schaeffer DV Eurell JA Johnson AL Chitosan scaffolds: interconnective pore size and cartilage engineering. 2006 2 313 320 -
44.
O'Brien FJ Harley BA Yannas IV Gibson LJ The effect of pore size on cell adhesion in collagen-GAG scaffolds. 2005 26 433 441 -
45.
Ding M Odgaard A Linde F Hvid I Age-related variations in the microstructure of human tibial cancellous bone. 2002 20 615 621 -
46.
Tayalia P Mendonca CR Baldacchimi T Mooney DJ 3D cell-migration studies using two-photon engineered polymer scaffolds. 2008 20 23 4494 4498 -
47.
Pathak A Kumar S Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. 2011 3 4 267 278 -
49.
Joshi MG Advani SG Miller F Santare MH Analysis of a femoral hip prosthesis designed to reduce stress shielding. 2000 33 1655 1662 -
50.
Byrne DP Lacroix D Planell JA Kelly DJ Prendergast PJ Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. 2007 28 5544 5554 -
51.
Discher DE Janmey P Wang Y Tissue cells feel and respond to the stiffness of their substrate. 2005 310 1139 1143 -
52.
Yeung H Qin L Lee K Leung K Cheng JC Quantification of porosity, connectivity and material density of calcium phosphate ceramic implants using micro-computed tomography. In: Qin L, Genant HK, Griffith JF, Leung KS, eds. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. 2007 289 305 -
53.
Engler AJ Sen S Sweeney HL Discher D Matrix elasticity directs stem cell lineage specification. 2006 126 677 689 -
54.
Haire TJ Hodgskinson R Ganney PS Langton CM A comparison of porosity, fabric and fractal dimension as predictors of the Young’s modulus of equine cancellous bone. 1998 20 588 593 -
55.
Hollister SJ Brennan JM Kikuchi N A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. 1994 27 4 433 444 -
56.
Choi K Kuhn JL Ciarelli MJ Goldstein SA The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. 1990 23 11 1103 1113 -
57.
Jang D Franco R Sarkar SK Lee B Fabrication of porous hydroxyapatite scaffolds as artificial bone preform and its biocompatibility evaluation. 2014;60 216 223 -
58.
Roshanbinfar K Ansari M Investigating of mechanical and biological properties of porous hydroxyapatite scaffolds produced by novel shake gel casting method. 2013 3 1 5 -
59.
Ryan TM Shaw CN Trabecular bone microstructure scales allometrically in the primate humerus and femur. 1758 2013 280 20130172 -
60.
Yoshikawa H Tamai N Murase T Myoui A Interconnected porous hydroxyapatite ceramics for bone tissue engineering. 2009 6 S341 S348 -
61.
Du Plessis M Relationship between specific surface area and pore dimension of high porosity nanoporous silicon: model and experiment. 2007 204 7 2319 2328 -
62.
Van Lieshout EM Van Kralingen GH El-Massoudi Y Weinans H Patka P Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. 2011 12 34 1 14 -
63.
Wang X Ni Q Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. 2003 21 312 319 -
65.
Bouet G Marchat D Cruel M Malaval L Vico L In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment. 2015 21 1 133 156
Authors
- Falvo D’Urso Labate, Giuseppe [PubMed] [Google Scholar] 1, 2
- Baino, Francesco [PubMed] [Google Scholar] 3
- Terzini, Mara [PubMed] [Google Scholar] 4
- Audenino, Alberto [PubMed] [Google Scholar] 4
- Vitale-Brovarone, Chiara [PubMed] [Google Scholar] 3
- Segers, Patrick [PubMed] [Google Scholar] 2
- Quarto, Rodolfo [PubMed] [Google Scholar] 5
- Catapano, Gerardo [PubMed] [Google Scholar] 1, * Corresponding Author ([email protected])
Affiliations
-
Department of Environmental and Chemical Engineering, University of Calabria, Rende, Cosenza - Italy -
IBiTech–bioMMeda, Department of Electronics and Information Systems, iMinds Medical IT, Ghent University, Gent - Belgium -
Department of Applied Science and Technology, Politecnico di Torino, Torino - Italy -
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino - Italy -
Department of Experimental Medicine, University of Genova, Genova - Italy
Article usage statistics
The blue line displays unique views in the time frame indicated.
The yellow line displays unique downloads.
Views and downloads are counted only once per session.