Abstract
Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.
J Appl Biomater Funct Mater 2015; 13(4): e301 - e312
Article Type: REVIEW
DOI:10.5301/jabfm.5000231
Authors
Kathyayini Nagaraju, Roopa Reddy, Narendra ReddyArticle History
- • Accepted on 07/01/2015
- • Available online on 02/12/2015
- • Published online on 18/12/2015
Disclosures
This article is available as full text PDF.
Introduction
Carbon nanotubes (CNTS) are widely used in various industries, including medical areas. CNTs are considered for drug delivery and other medical applications due to their small diameters and ability to penetrate cells and tissues. However, CNTs in their pristine form do not dissolve in water or organic solvents due to the lack of functional groups. Functionalized CNTs are easier to disperse in organic solvents or water, allowing the nanotubes to disperse homogeneously depending on the type and extent of functionalization (1). Solubility of up to 50 mg/ml have been reported for functionalized CNTs (2). Similarly, CNTs containing functional groups will have better interaction with other biomolecules and organic or inorganic matrices through vander wall interactions, hydrogen or covalent bonding leading to better properties of products incorporating the CNTs (3). CNTs have been functionalized using various approaches such as oxidation and covalent functionalization. Proteins are preferred for medical applications because proteins are more compatible with the body and proteins contain functional groups that enable chemical modifications, thereby providing better opportunity to load various types of drugs. Collagen, silk, and bovine serum albumin (BSA) are some of the proteins that have been made into films, fibers, nanoparticles and microparticles for medical applications. Combining the advantages of CNTs and proteins would provide unique biomaterials for treating cancer and other diseases. For instance, proteins can solubilize CNTs and can also arrange them according to size or chirality, detect various other proteins, coat their surface, and make CNTs biocompatible (4). In turn, CNTs can immobilize enzymes and create functional materials for various applications. This review provides an overview of the attempts made to develop protein functionalized CNTs and their potential applications.
Methods of functionalizing CNTs
Functionalizing by oxidation
Oxidation has been used as a stand-alone or a first-step approach towards functionalization of CNTs. Oxidation is achieved using acid(s) or alkali(s) via wet-chemical, photo-oxidation, oxygen, plasma, or gas phase treatments (5). Oxidation results in the addition of oxygen containing groups (carboxyl, hydroxyl) on the surface and also causes exfoliation, making the CNTs soluble in aqueous or other organic solvents (6). Oxidized CNTs can be further functionalized to introduce additional functional groups by amidation, esterification or other processes.
A simple approach of treating the nanotubes in sulfuric acid/nitric acid solutions was used to functionalize CNTs by oxidation. As mentioned earlier, acid treatment functionalized the CNTs by opening the tubes and creating holes on the surface to which functional groups such as hydroxyl, carboxyl, and sulfate groups can be attached. This causes the nanotubes to become hydrophilic and therefore soluble in aqueous solvents, including phosphate buffered saline (PBS). CNTs functionalized using this approach were also found to be noncytotoxic (7). Nanotubes become considerably rougher and have a grooved surface after oxidation. Transmission electron microscopy (TEM) images revealed that CNTs that were long and straight before oxidation had become curved and twisted after oxidation (8). Oxidation has also been used by other researchers to create hydrophilic groups such as OH, COOH on the surface that can be used to react with other chemicals and form functional materials (9). Oxidized CNTs were found to spontaneously absorb various proteins and nonspecifically bind them onto the sidewalls of the CNTs (10). Nanotubes act as transporters; proteins attached onto the CNTs were found to be readily transported inside mammalian cells, which retained their biological activity (10).
Noncovalent functionalization
Noncovalent methods of functionalizing CNTs are preferable for some applications since substances can be attached to the tubes without affecting the network of the tubes (11). A noncovalent and nonorganic method of assembling macroscopic materials onto nanotubes through π-π interactions was developed by Zhu et al (12). The self-assembly was done on oxide surfaces modified with pyrene using external stimuli. In another approach, noncovalent functionalization was achieved by exposing CNTs to vapors containing the material to be functionalized. In addition, the nanotubes were further exposed to a chemical stabilizer and to another material to enhance stabilization and protect the functionalized material (11). A method was invented to functionalize CNTs without wrapping (nonwrapping) the tubes along their length by conjugation of functional polymers. It was suggested that π-stacking occurred between the polymer and the CNTs. Such an arrangement would facilitate addition of other chemicals onto the functionalized nanotubes forming a unique structure without affecting the properties of the CNTs. Some of the polymers used for functionalization included poly(arylene ethynylene)s and poly(3 -decylthiophene) (13).
Covalent functionalization
Covalent functionalization of CNTs is considered to provide better stability, accessibility, and reduced leaching (14). One of the most common means used to covalently functionalize CNTs is via diimide activated amidation through direct coupling of the carboxylic acid to proteins using
Schematic of the attachment of proteins onto carbon nanotubes through diimide-activated amidation. Reproduced from (14) with permission from Elsevier.
Protein functionalized CNTs for medical applications
CNTs have been functionalized using various proteins, including bovine serum albumin (BSA), DNA, and other proteins. The functionalization or immobilization of proteins onto carbon nanotubes is widely considered to be through covalent linkages. Functionalizing CNTs with proteins will provide various reactive groups, including hydroxyl, amines, thiols, and carboxylic acids (17). Some of the proteins that have been immbobilized onto CNTs through covalent linkages include chrymotrypsin, ferritin, fibrinogen, hemoglobin, and streptavidin. Several researchers have reported the covalent immobilization of proteins onto CNTs using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as the crosslinking agent (16). Based on confocal images, Hazani et al have reported that DNA-functionalized SWCNTs had minimal nonspecific interactions with noncomplementary sequences, demonstrating that the majority of the binding was through covalent crosslinkings (18). Although Hazani et al claim to have demonstrated that covalent crosslinking is predominant, Gao et al proposed that immobilization could also be due to absorption rather than covalent crosslinking, because absorption has strong affinity and spontaneity over covalent crosslinking (16).
In one of the earliest studies on functionalizing MWCNTs, Chen et al used 1-pyrenebutanoic acid succinimidyl ester to irreversibly attach onto to the surface of the CNTs through noncovalent interactions (19). This leads to the formation of succinimidyl ester groups that have high reactivity to primary and secondary amines and can be used to attach various types of biomolecules onto the functionalized nanotubes. A schematic of the functionalization of the nanotubes and subsequent attachment of biological molecules through amidation is shown in
Schematic of the functionalization of carbon nanotubes through amidation. Bottom image is of the single-walled nanotube grown on a gold template. Reproduced with permission from (19): Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001;123(16):3838-3839. Copyright 2001 American Chemical Society.
Protein nanotube conjugates were produced by covalent linkages between SWCNTs and MWCNTs and bovine serum albumin (20). CNTs were first purified by refluxing in nitric acid solution and later attached to BSA via diimide-activated amidation reaction. Although BSA is colorless in solution, a dark color solution was obtained after reaction between BSA and the SWCNATs and MWCNTs, suggesting functionalization. The atomic force microscopy (AFM) image in
Atomic force microscopy (AFM) images shows that the proteins are immobilized along the length of the carbon nanotubes. Reproduced with permission from (20): Huang W, Taylor S, Fu K, et al. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2002;2(4):311-314. Copyright 2002 American Chemical Society.
Amino functionalization of SWCNTs was done using 2 approaches based on chemical modifications of the carboxylic groups via amide formation (1). The first approach was to directly couple ethylene diamine with the carboxylic groups to introduce amino groups. The second approach was to reduce the carboxyl group to hydroxymethyl, later transforming the aminomethyl group. A schematic of the 2 approaches is shown in
Approaches used to functionalize the carbon nanotubes through a 2-step process. Reproduced with permission from (1): Ramanathan T, Fisher FT, Ruoff RS, Brinson LC. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater. 2005;17(6):1290-1295. Copyright 2005 American Chemical Society.
CNTs were made water-soluble by functionalizing with amino acids (22). Amino acid 116 and paraformaldehyde were added into a dimethylformamide solution containing the NTs and the mixture was heated at 130°C for 96 h. About 10% of the nanotubes were functionalized after the treatment. Later, the fCNTs were treated to remove the n-
CNTs have been functionalized with various types of proteins and molecules to enable them to penetrate into cells and deliver payloads. Some of the structures that have been proven to be capable of penetrating the cells and that display biological functions are depicted in
Biological structures that have been proven to be capable of penetrating into cells and retaining biological functions. Reproduced from (23) with permission from Elsevier.
Amino-functionalized CNTs have been used as delivery vehicles for DNA for targeted gene delivery (24). The interaction between plasmid DNA and single-walled and multiwalled amino functionalized CNTs and lysine functionalized SWCNTs (20-70 nm) were studied.
Scanning electron microscopy (SEM) picture showing the attachment of DNA onto the single-walled carbon nanotubes and multiwalled carbon nanotubes at 3 different magnifications. Reproduced with permission from (24): Singh R, Pantarotto D, McCarthy D, et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc. 2005;127(12):4388-4396. Copyright 2005 American Chemical Society.
CNTs were covalently linked with DNA in a multistep approach. Chemical modification (oxidation) was first done to obtain amine terminated CNTs, which were later covalently bound with DNA (25). X-ray photoelectron spectroscopy was used to confirm formation of the amine terminated CNTs. Further, AFM studies conclusively showed that the chemical functionalization occurred at the ends and sidewalls of the CNTs, as seen from
Atomic force microscopy images show that chemical functionalization and attachment of DNA occurred at the sidewalls (
A noncovalent binding of unmodified siRNAs on to SWCNTs for efficient transport into cells and the liberation of siRNA for efficient gene silencing was developed by Krajcik et al. SWCNTs were first oxidized and later functionalized with hexamethylenediamine (26). To prepare siRNA-SWNT complexes, aqueous solutions of functionalized SWCNTs were combined with siRNA, ensuring that no agglomeration occurred. It was concluded that SWCNTs functionalized with HMDA and poly(diallyldimethylammonium)chloride (PDDA) were found to be suitable for forming complexes with siRNA where the siRNA-SWNT complexes were able to translocate into primary cells. The siRNA was released and induced efficient silencing of target genes. SWCNTs were functionalized with hexamethylenediamine (HMDA) and poly(diallyldimethylammonium)chloride (PDDA) that was able to bind the negatively charged siRNA through electrostatic interactions. No cytotoxic effects were observed even at a nanotube concentration of 10 mg/l and the functionalized CNTs were able to cross the cell membrane (26).
The ability of SWCNTs and MWCNTs to load plasmid DNA and enter cells, together with the extent of influence on gene expression, was investigated by Pantarotto et al. In this study, CNTs were functionalized by adding a pyrrolidine ring with an amino-terminal oligoethylene glycol attached to a nitrogen atom through covalent bonding. Concentration of the functional groups was estimated to be about 0.55 mmol/g and 0.90 mmol/g for the SWCNTs and MWCNTs, respectively. After loading with plasmid DNA, the CNTs were incubated with HeLa cells at a concentration of 2.5 mg/ml.
Images of HELa cells containing the carbon nanotubes. (
Higher gene expressions (5-10 times) have been observed in cells containing CNTs compared to those without nanotubes. Recent studies have shown that pyrimidine functionalized CNTs incubated with single-stranded DNA formed macroscopic aggregates that were radially bound to form a 3D lattice structure, as seen in
3D lattice structure formed from the macroscopic aggregates of pyrimidine functionalized carbon nanotubes containing single-stranded DNA. Reproduced with permission from (28): Arnett CM, Marsh CP, Welch CR, et al. Enzyme-mediated assimilation of DNA-functionalized single-walled carbon nanotubes. Langmuir. 2010;26(2):613-617. Copyright 2010 American Chemical Society.
Transmission electron microscopy (TEM) image of a carbon nanotube showing the attachment
Covalently linked peptide nanotubes were functionalized to obtain wires containing free amino groups (31) with about 0.3 mmol/g to 0.5 mmol/g of functional groups loaded per gram of the NTs. Further structural analysis showed that the nanotube peptide assumed the secondary configuration necessary to be recognized by specific antibodies and the NTs were considered to be suitable to modulate ligand-receptor interactions. SWCNTs dispersed using a 29-residue peptide were used to demonstrate that the peptide organizes the SWCNTs into fibrous arrays (32). Using specific sonication (1 or 4 min, 10 W) and centrifugation (successive centrifugation at 20 000 g for 15 min, 50 000 g for 30 min and 100 000 g for 1 h), it was demonstrated that individual peptide-wrapped SWCNTs could assemble into longer structures (1.2 ± 1.1 µm in length and average diameter of 2.4 ± 1.3 nm) through peptide-peptide interactions.
Atomic force microscopy (AFM) image of the single-walled carbon nanotubes assembled into long structures. Reproduced with permission from (32): Zorbas V, Ortiz-Acevedo A, Dalton AB, et al. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J Am Chem Soc. 2004;126(23):7222-7227. Copyright 2004 American Chemical Society.
SWCNTs and MWCNTs were functionalized using bovine serum albumin using carbodiimide-activated amidation reaction (20). In a similar approach, CNTs functionalized using oligomeric polyethylene glycol compounds that contained ester linkages were later used as starting material in ester-to-amide transformation reactions with BSA proteins (33). An investigation was done to understand the binding of BSA to MWCNTs functionalized with 4 different chemicals that differed in their length, diameter, and structure (34). Using steady-state and time-resolved fluorescent experiments, it was demonstrated that the proteins were bound onto the CNTs by forming an complex. In addition, it was found that nanotubes with larger diameters had stronger protein binding compared to smaller diameter nanotubes. Negative charges or steric properties enhanced binding for some proteins and not others suggesting that electrostatic and stereochemical interactions of the nanotubes and the proteins played a part in determining protein binding (34).
Bovine serum albumin (BSA) and other proteins were used to solubilize SWCNTs using a simple approach (17). Aqueous dispersions of SWNTs were prepared by dispersing in dimethyl formamide. Later, the nanotubes were dispersed in protein solutions and ultrasonicated.
Differences in the solubility of the carbon nanotubes without
Transmission electron microscopy (TEM) images of BSA (globular and elongated shape) attached onto amino-functionalized multiwalled carbon nanotubes at 2 different magnifications. Reproduced from (36) with permission from Elsevier.
In a recent study, a commercially available mixture of soy protein and milk protein was functionalized onto MWCNTs using a 2-step MWCNT fabrication process (37). In the first step, the protein and metal salt was prepared and dried; then, in the second step, the dried materials were decomposed in a furnace to form the CNTs. Later, the MWCNTs were purified to remove volatile contents and metals and were used for further analysis. Based on TEM and X-ray diffraction (XRD) results, it was found that the nanotubes obtained were about 100 nm in size and structurally polycrystalline.
Feritin, a protein from horse shell that contains about 24 units with diameters up to 12 nm to 13 nm was used to study the affinity of protein to SWCNTs in water (38). Up to 25% of the feritin was solubilized and was well dispersed, as shown in
Changes in the dispersibility of feritin in water without (
Natural proteins such as lysozymes have also been functionalized onto CNTs for biosensing and other applications using various approaches. Lysozymes are presumed to be adsorbed onto CNTs through hydrophobic and π-π interactions. Lysozyme and oxidized CNTs were found to mainly have electrostatic interactions. The amount of lysozyme attached onto the CNTs was dependent on the pH and could be controlled by varying the net charge (39, 40). Denaturation of lysozyme was not observed during the interaction of the lysozyme with CNTs. It was suggested that covalent binding may be necessary to retain the lysozyme for rigid applications (39, 40). Four proteins (fibrinogen, c-globulin, hemoglobin, and fibronectin) were used as intermediates for self-assembly of gold nanoparticles onto functionalized MWCNTs (41). It was suggested that the protein-assisted binding of metallic nanoparticles could be used to develop CNT-based catalysts for supercapacitors and various applications. Lipases extracted from
Understanding the interaction of blood proteins with CNTs would be beneficial to design CNTs for various biomedical applications. In a detailed study on the interaction of the blood proteins Bovine Fibrinogen (BFG), Gamma globulin (Ig), Transferrin (Tf), and bovine serum albumin (BSA), it was found that the binding of proteins onto CNTs was determined by the structure, amino acid composition, and molecular weight, among other factors (43). AFM images of CNTs after incubating in various proteins after 10 min and 5 h is shown in
Atomic force microscopy (AFM) images of blood proteins (Tf, BSA) attached onto the carbon nanotubes 10 min and 5 h after incubation. Reproduced from (43): Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA. 2011;108(41):16968-16973, with permission from the National Academy of Sciences of the USA.
Although most proteins have been successfully attached onto CNTs through various physical and chemical means, there are several pre-requisites for proteins to attach onto CNTs. For example, amphiphilicity was required for proteins to disperse CNTs and only amphiphilic proteins containing hydrophobic residues at the center or end of the sequence were able to provide stable dispersions. Similarly, aromatic amino acids were found to be required for the binding of peptides onto CNTs. Four polypeptides with a particular aminoacid sequence were reported to be responsible for protein binding onto CNTs (44). The strength of the binding between CNTs and peptides was directly dependent on the number of interacting residues on the surface of the peptides (45). It is necessary to thoroughly understand the structure, properties, and behavior of the proteins and their interaction with CNTs to use protein-functionalized CNTs for specific applications.
Protein-functionalized CNTs as biosensors
Functionalized CNTs can be used as biosensors because the nanostructure of CNTs together with their conducting properties enable tiny signals to be detected and transmitted that help locate target molecules at low concentration levels (16). CNTs functionalized with various proteins have been studied for potential biosensing applications. Some of the proteins studied for functionalization of CNTs intended for biosensing applications include acetylcholinesterase, avidin, BSA, chymotrypsin, cytochrome C, ferritin, lipase, lysozyme, and streptavidin as seen from
Some of the proteins used to functionalize carbon nanotubes and their potential applications
Protein | Carbon nanotube materials | Application |
---|---|---|
Reproduced with permission from (47): Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: A review on structure and their interaction with proteins. J Chem. 2013; Article ID 676815. | ||
-Β-Glucosidase | -MWCNT-COOH | -Biocatalysis |
- |
-MWCNTs or MWCNTs-COOH | -Biocatalysis |
-Horseradish peroxidase | -SWCNT/chitosan modified glassy carbon electrode (GCE) | -Biosensor |
- |
-MWCNT modified glassy carbon electrode | -Biofuel cells |
- |
-SWNT/ionic liquid modified GCE | -Biofuel cell, biosensor |
- |
-CNT modified boron-doped diamond | -Biofuel cell, biosensor |
-Alcohol dehydrogenase | -SWCNT/poly(dimethyldiallylammonium chloride) (PDDA) modified GCE | -Ethanol biosensor |
-Glucose oxidase | -SWCNT/silica modified GCE | -Glucose biosensor |
-Glucose oxidase, Horseradish peroxidase | -MWCNT-toluidine blue/nafion modified GCE | -Glucose biosensor |
-Cytochrome C | -WCNT/chitosan/ionic liquid modified GCE | -H2O2 detector |
-Horseradish peroxidase | -MWCNT/chitosan/sol-gel modified GCE | -H2O2 detector |
-Cytochrome C | -MWCNT/poly(amidoamine)/chitosan modified GCE | -Nitrite biosensor |
- |
-MWCNT/chitosan | -Oxygen biosensor, biofuel cells |
Oxidized SWCNTs were functionalized with knob protein domain from adenovirus serotype 12(Ad 12 knob) or its human cellular receptor, the coxsackic virus and adenovirus receptor (CAR) protein via diimide-activated amidation (11). AFM images showed that the protein complexes were attached along the length of the SWNT. The functionalized CNTs retained their biologically active conformation and current-gate voltage measurements showed that the modified CNTs could act as biosensors, detecting protein activity and environmental adenoviruses (11).
A biofunctional molecule 1-Aminopyrene (1-AP) containing a pyrenyl group and an amino functional group was used to make MWCNTs disperse in aqueous solutions and also to assist in enzyme immobilization for potential use as biofuel cells (48). Laccase was immobilized on MWCNTs functionalized with 1-AP using glutaraldehyde crosslinking. Functionalizing MWCNTs with 1-AP made the MWCNTs easily dispersible in an acetate buffer solution, as seen in
Digital image of pristine carbon nanotubes (
Amino-functionalized CNTs treated with iron phthalocyanine were investigated as a catalyst for the oxygen reduction reaction (ORR) in an air cathode single cell microbial fuel cell (49). Considerably high electrocatalytic activity (power density of 601 mWm2) was obtained using the amino-functionalized CNTs.
Functionalizing of enzymes onto CNTs has been performed using various approaches. Bioelectrodes for sensing glucose and ethanol were fabricated by wrapping single-stranded DNA on to the CNTs and immobilizing enzymes onto the DNA-wrapped CNTs (50). The enzyme-immobilized CNTs had increased activity and stability of glucose oxidase and laccase, while power production was also enhanced (50). Surfactants such as Triton X-100 were found to specifically bind streptavadin and facilitate interfacial electron transfer of the proteins with enhanced faradic responses. In another study, a layer-by-layer approach has been adopted to immobilize various types of enzymes onto CNTs. This approach enables increasing the biocatalytic activity of the CNTs to the desired level by increasing the number of enzyme layers (51). Strong electrostatic interactions between the DNA and protein in addition to van der Waals and π-π interactions provide excellent adhesion of the enzymes to the CNTs. These fCNTs were found to have ultrasensitive detection that was considerably higher that common sensors, leading to high levels of DNA or protein detection (51). Rather than using physical absorption, which could cause leaching and durability issues, covalent binding of enzymes has also been performed. Enzyme loadings as high as 1000 µg/g of CNT have been obtained through covalent crosslinking (51).
Cytotoxicity of protein functionalized CNTs
Potential cytotoxicity of CNTs is 1 of the major limitations for medical applications. However, contradictory reports have been published on the cytotoxicity of CNTs. It has been suggested that cytotoxicity of CNTs is dependent on the concentration of the CNTs in the cells, the cell types, and thetype and level of functionalization (52). The 4 different blood proteins discussed earlier had lower cytotoxicity than uncoated CNTs. Among the 4 proteins, BFG-coated CNTs showed no toxicity, which was attributed to the multi-layer arrangement of the proteins on the surface and the covering of the CNT surface, thereby avoiding exposure of the CNTs to cells. However, CNTs containing high levels of BFG showed lower cell viability compared to those with alower level of loading (53). BSA was shown to disperse and BSA-dispersed CNTs were readily taken up by HeLa and human mesenchymal stem cells (hMSCs) with distinct subcellular localization even in the cytoplasm. As high as 86 ± 33 x106 and 21 ± 33 x106 of SWCNTs were detected per hMSC and Hela cell, respectively, without any adverse effects to the cells (54).
Conclusions
The functionalizing of CNTs with proteins has mutual benefits that enable the unique properties and application of CNTs to be realized for various fields. CNTs have been functionalized with various proteins and used predominantly for medical applications, including biological sensing. Protein-functionalized CNTs have shown potential for having high pay loads and long release rates. The functionalized CNTs also retain their biological function and enter cells relatively much easier than free proteins. In addition to conventionally used proteins such as BSA, collagen, and fibrinogen, plant proteins such as zein and soy proteins should be considered for functionalizing the CNTs. Although a couple of reports are available on the use of plant proteins such as soy proteins for functionalizing CNTS, further research is necessary to understand the potential of using cereal proteins to functionalize CNTs for various applications. Until now, protein-functionalized CNTs have mainly been studied for biosensing, biocatalysis, and medical applications. New application areas in food, energy, and electronics should be explored for CNTs with or without functionalization. Although most studies show that CNTs at low concentrations do not affect cytocompatibility, specific studies do demonstrate cytotoxic effects of CNTs. Further research is necessary to understand the cytotoxic and carcinogenic effects of CNTs before and after functionalization with proteins.
Disclosures
-
1.
Ramanathan T Fisher FT Ruoff RS Brinson LC Amino-functionalized carbon nanotubes for binding to polymers and biological systems. 2005 17 6 1290 1295 -
2.
Tagmatarchis S Prato M Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. 2004 14 4 437 439 -
3.
Stevens JL Huang AY Peng H Chiang IW Khabashesku VN Margrave JL Side-wall functionalization of single walled carbon nanotubes through fluorination and subsequent reactions with terminal domains. 2003 3 3 331 336 -
4.
Calvaresi M Zerbetto F The devil and holy water: protein and carbon nanotube hybrids. 2013 46 11 2454 63 -
5.
Datsyuk V Kalyva M Papagelis K et al. Chemical oxidation of multiwalled carbon nanotubes. 2008 46 6 833 840 -
6.
Balasubramanian K Burghard M Chemically functionalized carbon nanotubes. 2005 1 2 180 192 -
7.
Carrero-Sánchez JC Elías AL Mancilla R et al. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. 2006 6 8 1609 1616 -
8.
Buang N Fadil F Majid ZA Shahir S Characteristics of mild acid functionalized multiwalled carbon nanotubes towards high dispersion with low structural defects. 2012 7 1 33 39 https://chalcogen.ro/33_Buang.pdf Accessed August 3, 2015. -
9.
Prato M Kostarelos K Bianco A Functionalized carbon nanotubes in drug design and discovery. 2008 41 1 60 68 -
10.
Kam NWS Dai H Carbon nanotubes as intracellular protein transporters: generality and biological functionality. 2005 127 16 6021 6026 -
11.
Zhang YB Kanungo M Ho AJ et al. Functionalized carbon nanotubes for detecting viral proteins. 2007 7 10 3086 3091 -
12.
Zhu J Yudasaka M Zhang M Iijima S Dispersing carbon nanotubes in water: A noncovalent and nonorganic way. 2004 108 31 11317 11320 -
14.
Daniel S Rao TP Rao KS et al. A review of DNA functionalized/grafted carbon nanotubes and their characterization. 2007 122 2 672 682 -
15.
Oh S Lee H Keum D et al. Multiwalled carbon nanotubes and nanofibers grafted with polyetherketones in mild and viscous polymeric acid. 2006 47 4 1132 1140 -
16.
Gao Y Kyratzis I Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—a critical assessment. 2008 19 10 1945 1950 -
17.
Karajanagi SS Yang H Asuri P Sellitto E Dordick JS Kane RS Protein-assisted solubilization of single-walled carbon nanotubes. 2006 22 4 1392 1395 -
18.
Hazani M Naaman R Hennrich F Kappes MM Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. 2003 3 2 153 155 -
19.
Chen RJ Zhang Y Wang D Dai H Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. 2001 123 16 3838 3839 -
20.
Huang W Taylor S Fu K et al. Attaching proteins to carbon nanotubes via diimide-activated amidation. 2002 2 4 311 314 -
21.
Zhang W Zhang Z Zhang Y The application of carbon nanotubes in target drug delivery systems for cancer therapies. 2011 6 1 555 577 -
22.
Georgakilas V Tagmatarchis N Pantarotto D Bianco A Briand JP Prato M Amino acid functionalisation of water soluble carbon nanotubes. 2002 24 24 3050 3051 -
23.
Klumpp C Kostarelos K Prato M Bianco A Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. 2006 1758 3 404 412 -
24.
Singh R Pantarotto D McCarthy D et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. 2005 127 12 4388 4396 -
25.
Chen W Tzang CH Tang J Yang M Lee S Covalently linked deoxyribonucleic acid with multiwall carbon nanotubes: synthesis and characterization. 2005 86 10 103114-103114 3 -
26.
Krajcik R Jung A Hirsch A Neuhuber W Zolk O Functionalization of carbon nanotubes enables noncovalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes. 2008 369 2 595 602 -
27.
Pantarotto D Singh R McCarthy D et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. 2004 43 39 5242 5246 -
28.
Arnett CM Marsh CP Welch CR et al. Enzyme-mediated assimilation of DNA-functionalized single-walled carbon nanotubes. 2010 26 2 613 617 -
29.
Zheng M Jagota A Semke ED et al. DNA-assisted dispersion and separation of carbon nanotubes. 2003 2 5 338 342 -
30.
Guo Z Sadler PJ Tsang SC Immobilization and visualization of DNA and proteins on carbon nanotubes. 1998 10 9 701 703 -
31.
Pantarotto D Partidos CD Graff R et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. 2003 125 20 6160 6164 -
32.
Zorbas V Ortiz-Acevedo A Dalton AB et al. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. 2004 126 23 7222 7227 -
33.
Fu K Huang W Lin Y et al. Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution. 2002 2 5 457 461 -
34.
Mu Q Liu W Xing Y Zhou H et al. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. 2008 112 3300 07 -
35.
Lamprecht C Danzberger J Lukanov P et al. AFM imaging of functionalized double-walled carbon nanotubes. 2009 109 8 899 906 -
36.
Awasthi K Singh DP Singh SK Dash D Srivastava ON Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes. 2009 24 4 301 306 -
37.
Saxena S Ramu R Hait C Priya S Synthesis and characterization of functionalized CNTs using soya and milk protein. 2014 4 791 797 -
38.
Lin Y Allard LF Sun Y Protein affinity of single walled carbon nanotubes in water. 2004 108 12 3760 3764 -
39.
Bomboi F Bonincontro A La Mesa C Tardani F Interactions between single-walled carbon nanotubes and lysozyme. 2011 355 2 342 347 -
40.
Bomboi F Tardani F Gazzoli D Bonincontro A La Mesa C Lysozyme binds onto functionalized carbon nanotubes. 2013 108 16 22 -
41.
Wei G Pan C Reichert J Jandt KD Controlled assembly of protein protected gold nanoparticles on noncovalent functionalized carbon nanotubes. 2010 48 3 645 653 -
42.
Shi Q Yang D Su Y et al. Covalent functionalization of multi-walled carbon nanotubes by lipase. 2007 9 6 1205 1210 -
43.
Ge C Du J Zhao L et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. 2011 108 41 16968 16973 -
44.
He Z Zhou J Probing carbon nanotube-amino acid interactions in aqueous solution with molecular dynamic simulations. 2014 78 500 509 -
45.
Liu YL Chang Y Chang YH Shih YJ Preparation of amphiphilic polymer-functionalized carbon nanotubes for low-protein-adsorption surfaces and protein-resistant membranes. 2010 2 12 3642 3647 -
46.
Guo M Chen J Liu D Nie L Yao S Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. 2004 62 1 29 35 -
47.
Saifuddin N Raziah AZ Junizah AR Carbon nanotubes: A review on structure and their interaction with proteins. 2013 Article ID 676815. -
48.
Pang HL Liu J Hu D Zhan XH Chen JH Immobilization of laccase onto 1-aminopyrene functionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction. 2010 55 22 6611 6616 -
49.
Yuan Y Zhao B Jeon Y Zhong S Zhou S Kim S Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. 2011 102 10 5849 5854 -
51.
Mani V Devadas B Chen S Li Y Immobilization of enzymes and redox proteins and their electrochemical biosensor applications. 2013 50 12 35 41 -
52.
Sun Z Liu Z Meng J et al. Carbon nanotubes enhance cytotoxicity mediated by human lymphocytes in vitro. 2011 6 6 e21073 e21079 -
53.
Brown S Jespersen TS Nygård J A genetic analysis of carbon-nanotube-binding proteins. 2008 4 4 416 420 -
54.
Holt BD Dahl KN Islam MF Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in different human cell types. 2011 7 16 2348 2355
Authors
- Nagaraju, Kathyayini [PubMed] [Google Scholar]
- Reddy, Roopa [PubMed] [Google Scholar]
- Reddy, Narendra [PubMed] [Google Scholar] , * Corresponding Author ([email protected])
Affiliations
-
Center for Emerging Technologies, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore - India
Article usage statistics
The blue line displays unique views in the time frame indicated.
The yellow line displays unique downloads.
Views and downloads are counted only once per session.