Advertisement

Synthesis and characterization of oligo(ethylene glycol)s functionalized with desaminotyrosine or desaminotyrosyltyrosine

Abstract

Purpose: The aromatic compounds desaminotyrosine (DAT) and desaminotyrosyltyrosine (DATT) have been successfully used to functionalize gelatin in order to form physically crosslinked networks via π-π interactions and hydrogen bonds of the introduced phenol moieties. Here, it was explored whether this concept can be applied to a synthetic polymer not engaging in additional interactions such as triple helix formation in gelatin, enabling a network to form by physical interactions mainly related to the terminal functional groups. Oligo(ethylene glycol) (OEG) was chosen as hydrophilic synthetic polymer for the backbone structure. Methods: Linear OEG (MP = 3 kDa) and four-arm OEG (Mn = 5 kDa) with amino functionalities as endgroups were functionalized with DAT and DATT using EDC·HCl and NHS as activating agents. The compounds were characterized by NMR, IR spectroscopy, and MALDI. Rheological behavior of aqueous solutions of the polymers was studied. The critical micelle concentration (CMC) was determined by a fluorescence spectroscopic analysis using the hydrophobic fluorescent dye pyrene. Results: DATT-functionalized linear OEG, four-arm DAT-functionalized OEG and four-arm DATT-functionalized OEG were synthesized with degrees of functionalization of 60-95 mol%. All compounds were water soluble, and rheological measurements revealed a decrease in storage modulus G’ and loss modulus G’’ compared to unfunctionalized OEG. Moreover, the CMC of linear OEG-DATT could be determined. Conclusions: The syntheses of OEG functionalized with the aromatic compounds DAT and DATT was reported. The polymers showed the properties of a surfactant.

J Appl Biomater Funct Mater 2012; 10(3): 170 - 176

Article Type: ORIGINAL RESEARCH ARTICLE

DOI:10.5301/JABFM.2012.10342

Authors

Konstanze K. Julich-Gruner, Axel T. Neffe, Andreas Lendlein

Article History

This article is available as full text PDF.

  • If you are a Subscriber, please log in now.

  • Article price: Eur 36,00
  • You will be granted access to the article for 72 hours and you will be able to download any format (PDF or ePUB). The article will be available in your login area under "My PayPerView". You will need to register a new account (unless you already own an account with this journal), and you will be guided through our online shop. Online purchases are paid by Credit Card through PayPal.
  • If you are not a Subscriber you may:
  • Subscribe to this journal
  • Unlimited access to all our archives, 24 hour a day, every day of the week.

Authors

  • Julich-Gruner, Konstanze K. [PubMed] [Google Scholar]
    Center for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies, Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Teltow - Germany
  • Neffe, Axel T. [PubMed] [Google Scholar]
    Center for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies, Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Teltow - Germany
  • Lendlein, Andreas [PubMed] [Google Scholar]
    Center for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies, Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Teltow - Germany

Article usage statistics

The blue line displays unique views in the time frame indicated.
The yellow line displays unique downloads.
Views and downloads are counted only once per session.

No supplementary material is available for this article.